Spaces:
Build error
Build error
osanseviero
commited on
Commit
·
bee801c
1
Parent(s):
dde7894
Add model and demo
Browse files- Procfile +1 -0
- app.py +91 -0
- autoencoder_model.png +0 -0
- model-final.pth +3 -0
- predict.py +79 -0
- prediction.ipynb +0 -0
- requirements.txt +8 -0
Procfile
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
web: sh setup.sh && streamlit run app.py
|
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import PIL
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import cv2
|
5 |
+
from skimage.color import lab2rgb, rgb2lab, rgb2gray
|
6 |
+
from skimage import io
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
class ColorizationNet(nn.Module):
|
11 |
+
def __init__(self, input_size=128):
|
12 |
+
super(ColorizationNet, self).__init__()
|
13 |
+
|
14 |
+
MIDLEVEL_FEATURE_SIZE = 128
|
15 |
+
resnet=models.resnet18(pretrained=True)
|
16 |
+
resnet.conv1.weight=nn.Parameter(resnet.conv1.weight.sum(dim=1).unsqueeze(1))
|
17 |
+
|
18 |
+
self.midlevel_resnet =nn.Sequential(*list(resnet.children())[0:6])
|
19 |
+
|
20 |
+
self.upsample = nn.Sequential(
|
21 |
+
nn.Conv2d(MIDLEVEL_FEATURE_SIZE, 128, kernel_size=3, stride=1, padding=1),
|
22 |
+
nn.BatchNorm2d(128),
|
23 |
+
nn.ReLU(),
|
24 |
+
nn.Upsample(scale_factor=2),
|
25 |
+
nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1),
|
26 |
+
nn.BatchNorm2d(64),
|
27 |
+
nn.ReLU(),
|
28 |
+
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
|
29 |
+
nn.BatchNorm2d(64),
|
30 |
+
nn.ReLU(),
|
31 |
+
nn.Upsample(scale_factor=2),
|
32 |
+
nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1),
|
33 |
+
nn.BatchNorm2d(32),
|
34 |
+
nn.ReLU(),
|
35 |
+
nn.Conv2d(32, 2, kernel_size=3, stride=1, padding=1),
|
36 |
+
nn.Upsample(scale_factor=2)
|
37 |
+
)
|
38 |
+
|
39 |
+
def forward(self, input):
|
40 |
+
|
41 |
+
# Pass input through ResNet-gray to extract features
|
42 |
+
midlevel_features = self.midlevel_resnet(input)
|
43 |
+
|
44 |
+
# Upsample to get colors
|
45 |
+
output = self.upsample(midlevel_features)
|
46 |
+
return output
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
def show_output(grayscale_input, ab_input):
|
51 |
+
'''Show/save rgb image from grayscale and ab channels
|
52 |
+
Input save_path in the form {'grayscale': '/path/', 'colorized': '/path/'}'''
|
53 |
+
color_image = torch.cat((grayscale_input, ab_input), 0).detach().numpy() # combine channels
|
54 |
+
color_image = color_image.transpose((1, 2, 0)) # rescale for matplotlib
|
55 |
+
color_image[:, :, 0:1] = color_image[:, :, 0:1] * 100
|
56 |
+
color_image[:, :, 1:3] = color_image[:, :, 1:3] * 255 - 128
|
57 |
+
color_image = lab2rgb(color_image.astype(np.float64))
|
58 |
+
grayscale_input = grayscale_input.squeeze().numpy()
|
59 |
+
# plt.imshow(grayscale_input)
|
60 |
+
# plt.imshow(color_image)
|
61 |
+
return color_image
|
62 |
+
|
63 |
+
def colorize(img,print_img=True):
|
64 |
+
# img=cv2.imread(img)
|
65 |
+
img=cv2.resize(img,(224,224))
|
66 |
+
grayscale_input= torch.Tensor(rgb2gray(img))
|
67 |
+
ab_input=model(grayscale_input.unsqueeze(0).unsqueeze(0)).squeeze(0)
|
68 |
+
predicted=show_output(grayscale_input.unsqueeze(0), ab_input)
|
69 |
+
if print_img:
|
70 |
+
plt.imshow(predicted)
|
71 |
+
return predicted
|
72 |
+
|
73 |
+
# device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
74 |
+
# torch.load with map_location=torch.device('cpu')
|
75 |
+
model=torch.load("model-final.pth",map_location ='cpu')
|
76 |
+
|
77 |
+
|
78 |
+
import streamlit as st
|
79 |
+
st.title("Image Colorizer")
|
80 |
+
|
81 |
+
file=st.file_uploader("Please upload the B/W image",type=["jpg","jpeg","png"])
|
82 |
+
print(file)
|
83 |
+
if file is None:
|
84 |
+
st.text("Please Upload an image")
|
85 |
+
else:
|
86 |
+
file_bytes = np.asarray(bytearray(file.read()), dtype=np.uint8)
|
87 |
+
opencv_image = cv2.imdecode(file_bytes, 1)
|
88 |
+
im=colorize(opencv_image)
|
89 |
+
st.image(im)
|
90 |
+
st.text("Colorized!!")
|
91 |
+
# st.image(file)
|
autoencoder_model.png
ADDED
model-final.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6268c0b73c7bc3fefd3918d113fb74976f9780f4737bf6e4c088811a1a6872ec
|
3 |
+
size 3867929
|
predict.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
sys.path.insert(0, './WordLM')
|
3 |
+
|
4 |
+
import PIL
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import cv2
|
8 |
+
from skimage.color import lab2rgb, rgb2lab, rgb2gray
|
9 |
+
from skimage import io
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
class ColorizationNet(nn.Module):
|
14 |
+
def __init__(self, input_size=128):
|
15 |
+
super(ColorizationNet, self).__init__()
|
16 |
+
|
17 |
+
MIDLEVEL_FEATURE_SIZE = 128
|
18 |
+
resnet=models.resnet18(pretrained=True)
|
19 |
+
resnet.conv1.weight=nn.Parameter(resnet.conv1.weight.sum(dim=1).unsqueeze(1))
|
20 |
+
|
21 |
+
self.midlevel_resnet =nn.Sequential(*list(resnet.children())[0:6])
|
22 |
+
|
23 |
+
self.upsample = nn.Sequential(
|
24 |
+
nn.Conv2d(MIDLEVEL_FEATURE_SIZE, 128, kernel_size=3, stride=1, padding=1),
|
25 |
+
nn.BatchNorm2d(128),
|
26 |
+
nn.ReLU(),
|
27 |
+
nn.Upsample(scale_factor=2),
|
28 |
+
nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1),
|
29 |
+
nn.BatchNorm2d(64),
|
30 |
+
nn.ReLU(),
|
31 |
+
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
|
32 |
+
nn.BatchNorm2d(64),
|
33 |
+
nn.ReLU(),
|
34 |
+
nn.Upsample(scale_factor=2),
|
35 |
+
nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1),
|
36 |
+
nn.BatchNorm2d(32),
|
37 |
+
nn.ReLU(),
|
38 |
+
nn.Conv2d(32, 2, kernel_size=3, stride=1, padding=1),
|
39 |
+
nn.Upsample(scale_factor=2)
|
40 |
+
)
|
41 |
+
|
42 |
+
def forward(self, input):
|
43 |
+
|
44 |
+
# Pass input through ResNet-gray to extract features
|
45 |
+
midlevel_features = self.midlevel_resnet(input)
|
46 |
+
|
47 |
+
# Upsample to get colors
|
48 |
+
output = self.upsample(midlevel_features)
|
49 |
+
return output
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
def show_output(grayscale_input, ab_input):
|
54 |
+
'''Show/save rgb image from grayscale and ab channels
|
55 |
+
Input save_path in the form {'grayscale': '/path/', 'colorized': '/path/'}'''
|
56 |
+
color_image = torch.cat((grayscale_input, ab_input), 0).detach().numpy() # combine channels
|
57 |
+
color_image = color_image.transpose((1, 2, 0)) # rescale for matplotlib
|
58 |
+
color_image[:, :, 0:1] = color_image[:, :, 0:1] * 100
|
59 |
+
color_image[:, :, 1:3] = color_image[:, :, 1:3] * 255 - 128
|
60 |
+
color_image = lab2rgb(color_image.astype(np.float64))
|
61 |
+
grayscale_input = grayscale_input.squeeze().numpy()
|
62 |
+
# plt.imshow(grayscale_input)
|
63 |
+
# plt.imshow(color_image)
|
64 |
+
return color_image
|
65 |
+
|
66 |
+
model=torch.load("model-final.pth")
|
67 |
+
|
68 |
+
def colorize(img_path,print_img=True):
|
69 |
+
img=cv2.imread(img_path)
|
70 |
+
img=cv2.resize(img,(224,224))
|
71 |
+
grayscale_input= torch.Tensor(rgb2gray(img))
|
72 |
+
ab_input=model(grayscale_input.unsqueeze(0).unsqueeze(0)).squeeze(0)
|
73 |
+
predicted=show_output(grayscale_input.unsqueeze(0), ab_input)
|
74 |
+
if print_img:
|
75 |
+
plt.imshow(predicted)
|
76 |
+
return predicted
|
77 |
+
|
78 |
+
# out=colorize("download.png")
|
79 |
+
# print(out)
|
prediction.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-f https://download.pytorch.org/whl/torch_stable.html
|
2 |
+
torch==1.7.1+cpu
|
3 |
+
torchvision==0.9.1+cpu
|
4 |
+
numpy==1.18.5
|
5 |
+
opencv-python-headless==4.4.0.46
|
6 |
+
matplotlib==3.4.2
|
7 |
+
scikit-image==0.18.1
|
8 |
+
streamlit==0.81.1
|