roubaofeipi
commited on
Update train/train_t2i.py
Browse files- train/train_t2i.py +806 -807
train/train_t2i.py
CHANGED
@@ -1,807 +1,806 @@
|
|
1 |
-
import torch
|
2 |
-
import json
|
3 |
-
import yaml
|
4 |
-
import torchvision
|
5 |
-
from torch import nn, optim
|
6 |
-
from transformers import AutoTokenizer, CLIPTextModelWithProjection, CLIPVisionModelWithProjection
|
7 |
-
from warmup_scheduler import GradualWarmupScheduler
|
8 |
-
import torch.multiprocessing as mp
|
9 |
-
import numpy as np
|
10 |
-
import os
|
11 |
-
import sys
|
12 |
-
sys.path.append(os.path.abspath('./'))
|
13 |
-
from dataclasses import dataclass
|
14 |
-
from torch.distributed import init_process_group, destroy_process_group, barrier
|
15 |
-
from gdf import GDF_dual_fixlrt as GDF
|
16 |
-
from gdf import EpsilonTarget, CosineSchedule
|
17 |
-
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
|
18 |
-
from torchtools.transforms import SmartCrop
|
19 |
-
from fractions import Fraction
|
20 |
-
from modules.effnet import EfficientNetEncoder
|
21 |
-
|
22 |
-
from modules.model_4stage_lite import StageC, ResBlock, AttnBlock, TimestepBlock, FeedForwardBlock
|
23 |
-
from modules.previewer import Previewer
|
24 |
-
from core.data import Bucketeer
|
25 |
-
from train.base import DataCore, TrainingCore
|
26 |
-
from tqdm import tqdm
|
27 |
-
from core import WarpCore
|
28 |
-
from core.utils import EXPECTED, EXPECTED_TRAIN, load_or_fail
|
29 |
-
|
30 |
-
from accelerate import init_empty_weights
|
31 |
-
from accelerate.utils import set_module_tensor_to_device
|
32 |
-
from contextlib import contextmanager
|
33 |
-
from train.dist_core import *
|
34 |
-
import glob
|
35 |
-
from torch.utils.data import DataLoader, Dataset
|
36 |
-
from torch.nn.parallel import DistributedDataParallel as DDP
|
37 |
-
from torch.utils.data.distributed import DistributedSampler
|
38 |
-
from PIL import Image
|
39 |
-
from core.utils import EXPECTED, EXPECTED_TRAIN, update_weights_ema, create_folder_if_necessary
|
40 |
-
from core.utils import Base
|
41 |
-
from modules.common_ckpt import LayerNorm2d, GlobalResponseNorm
|
42 |
-
import torch.nn.functional as F
|
43 |
-
import functools
|
44 |
-
import math
|
45 |
-
import copy
|
46 |
-
import random
|
47 |
-
from modules.lora import apply_lora, apply_retoken, LoRA, ReToken
|
48 |
-
Image.MAX_IMAGE_PIXELS = None
|
49 |
-
torch.manual_seed(23)
|
50 |
-
random.seed(23)
|
51 |
-
np.random.seed(23)
|
52 |
-
#7978026
|
53 |
-
|
54 |
-
class Null_Model(torch.nn.Module):
|
55 |
-
def __init__(self):
|
56 |
-
super().__init__()
|
57 |
-
def forward(self, x):
|
58 |
-
pass
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
def identity(x):
|
64 |
-
if isinstance(x, bytes):
|
65 |
-
x = x.decode('utf-8')
|
66 |
-
return x
|
67 |
-
def check_nan_inmodel(model, meta=''):
|
68 |
-
for name, param in model.named_parameters():
|
69 |
-
if torch.isnan(param).any():
|
70 |
-
print(f"nan detected in {name}", meta)
|
71 |
-
return True
|
72 |
-
print('no nan', meta)
|
73 |
-
return False
|
74 |
-
class mydist_dataset(Dataset):
|
75 |
-
def __init__(self, rootpath, img_processor=None):
|
76 |
-
|
77 |
-
self.img_pathlist = glob.glob(os.path.join(rootpath, '*', '*.jpg'))
|
78 |
-
self.img_processor = img_processor
|
79 |
-
self.length = len( self.img_pathlist)
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
def __getitem__(self, idx):
|
84 |
-
|
85 |
-
imgpath = self.img_pathlist[idx]
|
86 |
-
json_file = imgpath.replace('.jpg', '.json')
|
87 |
-
|
88 |
-
with open(json_file, 'r') as file:
|
89 |
-
info = json.load(file)
|
90 |
-
txt = info['caption']
|
91 |
-
if txt is None:
|
92 |
-
txt = ' '
|
93 |
-
try:
|
94 |
-
img = Image.open(imgpath).convert('RGB')
|
95 |
-
w, h = img.size
|
96 |
-
if self.img_processor is not None:
|
97 |
-
img = self.img_processor(img)
|
98 |
-
|
99 |
-
except:
|
100 |
-
print('exception', imgpath)
|
101 |
-
return self.__getitem__(random.randint(0, self.length -1 ) )
|
102 |
-
return dict(captions=txt, images=img)
|
103 |
-
def __len__(self):
|
104 |
-
return self.length
|
105 |
-
|
106 |
-
class WurstCore(TrainingCore, DataCore, WarpCore):
|
107 |
-
@dataclass(frozen=True)
|
108 |
-
class Config(TrainingCore.Config, DataCore.Config, WarpCore.Config):
|
109 |
-
# TRAINING PARAMS
|
110 |
-
lr: float = EXPECTED_TRAIN
|
111 |
-
warmup_updates: int = EXPECTED_TRAIN
|
112 |
-
dtype: str = None
|
113 |
-
|
114 |
-
# MODEL VERSION
|
115 |
-
model_version: str = EXPECTED # 3.6B or 1B
|
116 |
-
clip_image_model_name: str = 'openai/clip-vit-large-patch14'
|
117 |
-
clip_text_model_name: str = 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k'
|
118 |
-
|
119 |
-
# CHECKPOINT PATHS
|
120 |
-
effnet_checkpoint_path: str = EXPECTED
|
121 |
-
previewer_checkpoint_path: str = EXPECTED
|
122 |
-
|
123 |
-
generator_checkpoint_path: str = None
|
124 |
-
|
125 |
-
# gdf customization
|
126 |
-
adaptive_loss_weight: str = None
|
127 |
-
use_ddp: bool=EXPECTED
|
128 |
-
|
129 |
-
|
130 |
-
@dataclass(frozen=True)
|
131 |
-
class Data(Base):
|
132 |
-
dataset: Dataset = EXPECTED
|
133 |
-
dataloader: DataLoader = EXPECTED
|
134 |
-
iterator: any = EXPECTED
|
135 |
-
sampler: DistributedSampler = EXPECTED
|
136 |
-
|
137 |
-
@dataclass(frozen=True)
|
138 |
-
class Models(TrainingCore.Models, DataCore.Models, WarpCore.Models):
|
139 |
-
effnet: nn.Module = EXPECTED
|
140 |
-
previewer: nn.Module = EXPECTED
|
141 |
-
train_norm: nn.Module = EXPECTED
|
142 |
-
|
143 |
-
|
144 |
-
@dataclass(frozen=True)
|
145 |
-
class Schedulers(WarpCore.Schedulers):
|
146 |
-
generator: any = None
|
147 |
-
|
148 |
-
@dataclass(frozen=True)
|
149 |
-
class Extras(TrainingCore.Extras, DataCore.Extras, WarpCore.Extras):
|
150 |
-
gdf: GDF = EXPECTED
|
151 |
-
sampling_configs: dict = EXPECTED
|
152 |
-
effnet_preprocess: torchvision.transforms.Compose = EXPECTED
|
153 |
-
|
154 |
-
info: TrainingCore.Info
|
155 |
-
config: Config
|
156 |
-
|
157 |
-
def setup_extras_pre(self) -> Extras:
|
158 |
-
gdf = GDF(
|
159 |
-
schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]),
|
160 |
-
input_scaler=VPScaler(), target=EpsilonTarget(),
|
161 |
-
noise_cond=CosineTNoiseCond(),
|
162 |
-
loss_weight=AdaptiveLossWeight() if self.config.adaptive_loss_weight is True else P2LossWeight(),
|
163 |
-
)
|
164 |
-
sampling_configs = {"cfg": 5, "sampler": DDPMSampler(gdf), "shift": 1, "timesteps": 20}
|
165 |
-
|
166 |
-
if self.info.adaptive_loss is not None:
|
167 |
-
gdf.loss_weight.bucket_ranges = torch.tensor(self.info.adaptive_loss['bucket_ranges'])
|
168 |
-
gdf.loss_weight.bucket_losses = torch.tensor(self.info.adaptive_loss['bucket_losses'])
|
169 |
-
|
170 |
-
effnet_preprocess = torchvision.transforms.Compose([
|
171 |
-
torchvision.transforms.Normalize(
|
172 |
-
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)
|
173 |
-
)
|
174 |
-
])
|
175 |
-
|
176 |
-
clip_preprocess = torchvision.transforms.Compose([
|
177 |
-
torchvision.transforms.Resize(224, interpolation=torchvision.transforms.InterpolationMode.BICUBIC),
|
178 |
-
torchvision.transforms.CenterCrop(224),
|
179 |
-
torchvision.transforms.Normalize(
|
180 |
-
mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)
|
181 |
-
)
|
182 |
-
])
|
183 |
-
|
184 |
-
if self.config.training:
|
185 |
-
transforms = torchvision.transforms.Compose([
|
186 |
-
torchvision.transforms.ToTensor(),
|
187 |
-
torchvision.transforms.Resize(self.config.image_size[-1], interpolation=torchvision.transforms.InterpolationMode.BILINEAR, antialias=True),
|
188 |
-
SmartCrop(self.config.image_size, randomize_p=0.3, randomize_q=0.2)
|
189 |
-
])
|
190 |
-
else:
|
191 |
-
transforms = None
|
192 |
-
|
193 |
-
return self.Extras(
|
194 |
-
gdf=gdf,
|
195 |
-
sampling_configs=sampling_configs,
|
196 |
-
transforms=transforms,
|
197 |
-
effnet_preprocess=effnet_preprocess,
|
198 |
-
clip_preprocess=clip_preprocess
|
199 |
-
)
|
200 |
-
|
201 |
-
def get_conditions(self, batch: dict, models: Models, extras: Extras, is_eval=False, is_unconditional=False,
|
202 |
-
eval_image_embeds=False, return_fields=None):
|
203 |
-
conditions = super().get_conditions(
|
204 |
-
batch, models, extras, is_eval, is_unconditional,
|
205 |
-
eval_image_embeds, return_fields=return_fields or ['clip_text', 'clip_text_pooled', 'clip_img']
|
206 |
-
)
|
207 |
-
return conditions
|
208 |
-
|
209 |
-
def setup_models(self, extras: Extras) -> Models: # configure model
|
210 |
-
|
211 |
-
dtype = getattr(torch, self.config.dtype) if self.config.dtype else torch.bfloat16
|
212 |
-
|
213 |
-
# EfficientNet encoderin
|
214 |
-
effnet = EfficientNetEncoder()
|
215 |
-
effnet_checkpoint = load_or_fail(self.config.effnet_checkpoint_path)
|
216 |
-
effnet.load_state_dict(effnet_checkpoint if 'state_dict' not in effnet_checkpoint else effnet_checkpoint['state_dict'])
|
217 |
-
effnet.eval().requires_grad_(False).to(self.device)
|
218 |
-
del effnet_checkpoint
|
219 |
-
|
220 |
-
# Previewer
|
221 |
-
previewer = Previewer()
|
222 |
-
previewer_checkpoint = load_or_fail(self.config.previewer_checkpoint_path)
|
223 |
-
previewer.load_state_dict(previewer_checkpoint if 'state_dict' not in previewer_checkpoint else previewer_checkpoint['state_dict'])
|
224 |
-
previewer.eval().requires_grad_(False).to(self.device)
|
225 |
-
del previewer_checkpoint
|
226 |
-
|
227 |
-
@contextmanager
|
228 |
-
def dummy_context():
|
229 |
-
yield None
|
230 |
-
|
231 |
-
loading_context = dummy_context if self.config.training else init_empty_weights
|
232 |
-
|
233 |
-
# Diffusion models
|
234 |
-
with loading_context():
|
235 |
-
generator_ema = None
|
236 |
-
if self.config.model_version == '3.6B':
|
237 |
-
generator = StageC()
|
238 |
-
if self.config.ema_start_iters is not None: # default setting
|
239 |
-
generator_ema = StageC()
|
240 |
-
elif self.config.model_version == '1B':
|
241 |
-
print('in line 155 1b light model', self.config.model_version )
|
242 |
-
generator = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]])
|
243 |
-
|
244 |
-
if self.config.ema_start_iters is not None and self.config.training:
|
245 |
-
generator_ema = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]])
|
246 |
-
else:
|
247 |
-
raise ValueError(f"Unknown model version {self.config.model_version}")
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
if loading_context is dummy_context:
|
252 |
-
generator.load_state_dict( load_or_fail(self.config.generator_checkpoint_path))
|
253 |
-
else:
|
254 |
-
for param_name, param in load_or_fail(self.config.generator_checkpoint_path).items():
|
255 |
-
set_module_tensor_to_device(generator, param_name, "cpu", value=param)
|
256 |
-
|
257 |
-
generator._init_extra_parameter()
|
258 |
-
generator = generator.to(torch.bfloat16).to(self.device)
|
259 |
-
|
260 |
-
|
261 |
-
train_norm = nn.ModuleList()
|
262 |
-
cnt_norm = 0
|
263 |
-
for mm in generator.modules():
|
264 |
-
if isinstance(mm, GlobalResponseNorm):
|
265 |
-
|
266 |
-
train_norm.append(Null_Model())
|
267 |
-
cnt_norm += 1
|
268 |
-
|
269 |
-
train_norm.append(generator.agg_net)
|
270 |
-
train_norm.append(generator.agg_net_up)
|
271 |
-
total = sum([ param.nelement() for param in train_norm.parameters()])
|
272 |
-
print('Trainable parameter', total / 1048576)
|
273 |
-
|
274 |
-
if os.path.exists(os.path.join(self.config.output_path, self.config.experiment_id, 'train_norm.safetensors')):
|
275 |
-
sdd = torch.load(os.path.join(self.config.output_path, self.config.experiment_id, 'train_norm.safetensors'), map_location='cpu')
|
276 |
-
collect_sd = {}
|
277 |
-
for k, v in sdd.items():
|
278 |
-
collect_sd[k[7:]] = v
|
279 |
-
train_norm.load_state_dict(collect_sd, strict=True)
|
280 |
-
|
281 |
-
|
282 |
-
train_norm.to(self.device).train().requires_grad_(True)
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
generator_ema.
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
params
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
scheduler
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
self.
|
394 |
-
self.
|
395 |
-
self.
|
396 |
-
|
397 |
-
|
398 |
-
os.environ['
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
)
|
406 |
-
|
407 |
-
|
408 |
-
self.
|
409 |
-
self.
|
410 |
-
self.
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
shape_lr
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
self.
|
496 |
-
self.
|
497 |
-
self.
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
torch.backends.
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
print()
|
510 |
-
print(
|
511 |
-
print(
|
512 |
-
print(
|
513 |
-
print()
|
514 |
-
print(
|
515 |
-
print(
|
516 |
-
print(
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
extras
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
data
|
526 |
-
|
527 |
-
|
528 |
-
print(
|
529 |
-
print(
|
530 |
-
print(
|
531 |
-
|
532 |
-
|
533 |
-
models
|
534 |
-
|
535 |
-
|
536 |
-
print(
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
print(
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
optimizers
|
546 |
-
|
547 |
-
|
548 |
-
print(
|
549 |
-
print(
|
550 |
-
print(
|
551 |
-
|
552 |
-
|
553 |
-
schedulers
|
554 |
-
|
555 |
-
|
556 |
-
print(
|
557 |
-
print(
|
558 |
-
print(
|
559 |
-
|
560 |
-
|
561 |
-
post_extras
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
print("
|
566 |
-
print(
|
567 |
-
print(
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
print()
|
581 |
-
print(
|
582 |
-
print()
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
'
|
630 |
-
'
|
631 |
-
'
|
632 |
-
'
|
633 |
-
'
|
634 |
-
'
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
'
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
models.
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
images
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
torch.cat([i for i in
|
731 |
-
torch.cat([i for i in
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
torch.cat([i for i in
|
737 |
-
torch.cat([i for i in
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
torchvision.utils.save_image(
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
models.
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
# os.environ["
|
797 |
-
#
|
798 |
-
#
|
799 |
-
|
800 |
-
#
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
|
807 |
-
main_worker(0, sys.argv[1] if len(sys.argv) > 1 else None, )
|
|
|
1 |
+
import torch
|
2 |
+
import json
|
3 |
+
import yaml
|
4 |
+
import torchvision
|
5 |
+
from torch import nn, optim
|
6 |
+
from transformers import AutoTokenizer, CLIPTextModelWithProjection, CLIPVisionModelWithProjection
|
7 |
+
from warmup_scheduler import GradualWarmupScheduler
|
8 |
+
import torch.multiprocessing as mp
|
9 |
+
import numpy as np
|
10 |
+
import os
|
11 |
+
import sys
|
12 |
+
sys.path.append(os.path.abspath('./'))
|
13 |
+
from dataclasses import dataclass
|
14 |
+
from torch.distributed import init_process_group, destroy_process_group, barrier
|
15 |
+
from gdf import GDF_dual_fixlrt as GDF
|
16 |
+
from gdf import EpsilonTarget, CosineSchedule
|
17 |
+
from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight
|
18 |
+
from torchtools.transforms import SmartCrop
|
19 |
+
from fractions import Fraction
|
20 |
+
from modules.effnet import EfficientNetEncoder
|
21 |
+
|
22 |
+
from modules.model_4stage_lite import StageC, ResBlock, AttnBlock, TimestepBlock, FeedForwardBlock
|
23 |
+
from modules.previewer import Previewer
|
24 |
+
from core.data import Bucketeer
|
25 |
+
from train.base import DataCore, TrainingCore
|
26 |
+
from tqdm import tqdm
|
27 |
+
from core import WarpCore
|
28 |
+
from core.utils import EXPECTED, EXPECTED_TRAIN, load_or_fail
|
29 |
+
|
30 |
+
from accelerate import init_empty_weights
|
31 |
+
from accelerate.utils import set_module_tensor_to_device
|
32 |
+
from contextlib import contextmanager
|
33 |
+
from train.dist_core import *
|
34 |
+
import glob
|
35 |
+
from torch.utils.data import DataLoader, Dataset
|
36 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
37 |
+
from torch.utils.data.distributed import DistributedSampler
|
38 |
+
from PIL import Image
|
39 |
+
from core.utils import EXPECTED, EXPECTED_TRAIN, update_weights_ema, create_folder_if_necessary
|
40 |
+
from core.utils import Base
|
41 |
+
from modules.common_ckpt import LayerNorm2d, GlobalResponseNorm
|
42 |
+
import torch.nn.functional as F
|
43 |
+
import functools
|
44 |
+
import math
|
45 |
+
import copy
|
46 |
+
import random
|
47 |
+
from modules.lora import apply_lora, apply_retoken, LoRA, ReToken
|
48 |
+
Image.MAX_IMAGE_PIXELS = None
|
49 |
+
torch.manual_seed(23)
|
50 |
+
random.seed(23)
|
51 |
+
np.random.seed(23)
|
52 |
+
#7978026
|
53 |
+
|
54 |
+
class Null_Model(torch.nn.Module):
|
55 |
+
def __init__(self):
|
56 |
+
super().__init__()
|
57 |
+
def forward(self, x):
|
58 |
+
pass
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
def identity(x):
|
64 |
+
if isinstance(x, bytes):
|
65 |
+
x = x.decode('utf-8')
|
66 |
+
return x
|
67 |
+
def check_nan_inmodel(model, meta=''):
|
68 |
+
for name, param in model.named_parameters():
|
69 |
+
if torch.isnan(param).any():
|
70 |
+
print(f"nan detected in {name}", meta)
|
71 |
+
return True
|
72 |
+
print('no nan', meta)
|
73 |
+
return False
|
74 |
+
class mydist_dataset(Dataset):
|
75 |
+
def __init__(self, rootpath, img_processor=None):
|
76 |
+
|
77 |
+
self.img_pathlist = glob.glob(os.path.join(rootpath, '*', '*.jpg'))
|
78 |
+
self.img_processor = img_processor
|
79 |
+
self.length = len( self.img_pathlist)
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
def __getitem__(self, idx):
|
84 |
+
|
85 |
+
imgpath = self.img_pathlist[idx]
|
86 |
+
json_file = imgpath.replace('.jpg', '.json')
|
87 |
+
|
88 |
+
with open(json_file, 'r') as file:
|
89 |
+
info = json.load(file)
|
90 |
+
txt = info['caption']
|
91 |
+
if txt is None:
|
92 |
+
txt = ' '
|
93 |
+
try:
|
94 |
+
img = Image.open(imgpath).convert('RGB')
|
95 |
+
w, h = img.size
|
96 |
+
if self.img_processor is not None:
|
97 |
+
img = self.img_processor(img)
|
98 |
+
|
99 |
+
except:
|
100 |
+
print('exception', imgpath)
|
101 |
+
return self.__getitem__(random.randint(0, self.length -1 ) )
|
102 |
+
return dict(captions=txt, images=img)
|
103 |
+
def __len__(self):
|
104 |
+
return self.length
|
105 |
+
|
106 |
+
class WurstCore(TrainingCore, DataCore, WarpCore):
|
107 |
+
@dataclass(frozen=True)
|
108 |
+
class Config(TrainingCore.Config, DataCore.Config, WarpCore.Config):
|
109 |
+
# TRAINING PARAMS
|
110 |
+
lr: float = EXPECTED_TRAIN
|
111 |
+
warmup_updates: int = EXPECTED_TRAIN
|
112 |
+
dtype: str = None
|
113 |
+
|
114 |
+
# MODEL VERSION
|
115 |
+
model_version: str = EXPECTED # 3.6B or 1B
|
116 |
+
clip_image_model_name: str = 'openai/clip-vit-large-patch14'
|
117 |
+
clip_text_model_name: str = 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k'
|
118 |
+
|
119 |
+
# CHECKPOINT PATHS
|
120 |
+
effnet_checkpoint_path: str = EXPECTED
|
121 |
+
previewer_checkpoint_path: str = EXPECTED
|
122 |
+
|
123 |
+
generator_checkpoint_path: str = None
|
124 |
+
|
125 |
+
# gdf customization
|
126 |
+
adaptive_loss_weight: str = None
|
127 |
+
use_ddp: bool=EXPECTED
|
128 |
+
|
129 |
+
|
130 |
+
@dataclass(frozen=True)
|
131 |
+
class Data(Base):
|
132 |
+
dataset: Dataset = EXPECTED
|
133 |
+
dataloader: DataLoader = EXPECTED
|
134 |
+
iterator: any = EXPECTED
|
135 |
+
sampler: DistributedSampler = EXPECTED
|
136 |
+
|
137 |
+
@dataclass(frozen=True)
|
138 |
+
class Models(TrainingCore.Models, DataCore.Models, WarpCore.Models):
|
139 |
+
effnet: nn.Module = EXPECTED
|
140 |
+
previewer: nn.Module = EXPECTED
|
141 |
+
train_norm: nn.Module = EXPECTED
|
142 |
+
|
143 |
+
|
144 |
+
@dataclass(frozen=True)
|
145 |
+
class Schedulers(WarpCore.Schedulers):
|
146 |
+
generator: any = None
|
147 |
+
|
148 |
+
@dataclass(frozen=True)
|
149 |
+
class Extras(TrainingCore.Extras, DataCore.Extras, WarpCore.Extras):
|
150 |
+
gdf: GDF = EXPECTED
|
151 |
+
sampling_configs: dict = EXPECTED
|
152 |
+
effnet_preprocess: torchvision.transforms.Compose = EXPECTED
|
153 |
+
|
154 |
+
info: TrainingCore.Info
|
155 |
+
config: Config
|
156 |
+
|
157 |
+
def setup_extras_pre(self) -> Extras:
|
158 |
+
gdf = GDF(
|
159 |
+
schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]),
|
160 |
+
input_scaler=VPScaler(), target=EpsilonTarget(),
|
161 |
+
noise_cond=CosineTNoiseCond(),
|
162 |
+
loss_weight=AdaptiveLossWeight() if self.config.adaptive_loss_weight is True else P2LossWeight(),
|
163 |
+
)
|
164 |
+
sampling_configs = {"cfg": 5, "sampler": DDPMSampler(gdf), "shift": 1, "timesteps": 20}
|
165 |
+
|
166 |
+
if self.info.adaptive_loss is not None:
|
167 |
+
gdf.loss_weight.bucket_ranges = torch.tensor(self.info.adaptive_loss['bucket_ranges'])
|
168 |
+
gdf.loss_weight.bucket_losses = torch.tensor(self.info.adaptive_loss['bucket_losses'])
|
169 |
+
|
170 |
+
effnet_preprocess = torchvision.transforms.Compose([
|
171 |
+
torchvision.transforms.Normalize(
|
172 |
+
mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)
|
173 |
+
)
|
174 |
+
])
|
175 |
+
|
176 |
+
clip_preprocess = torchvision.transforms.Compose([
|
177 |
+
torchvision.transforms.Resize(224, interpolation=torchvision.transforms.InterpolationMode.BICUBIC),
|
178 |
+
torchvision.transforms.CenterCrop(224),
|
179 |
+
torchvision.transforms.Normalize(
|
180 |
+
mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)
|
181 |
+
)
|
182 |
+
])
|
183 |
+
|
184 |
+
if self.config.training:
|
185 |
+
transforms = torchvision.transforms.Compose([
|
186 |
+
torchvision.transforms.ToTensor(),
|
187 |
+
torchvision.transforms.Resize(self.config.image_size[-1], interpolation=torchvision.transforms.InterpolationMode.BILINEAR, antialias=True),
|
188 |
+
SmartCrop(self.config.image_size, randomize_p=0.3, randomize_q=0.2)
|
189 |
+
])
|
190 |
+
else:
|
191 |
+
transforms = None
|
192 |
+
|
193 |
+
return self.Extras(
|
194 |
+
gdf=gdf,
|
195 |
+
sampling_configs=sampling_configs,
|
196 |
+
transforms=transforms,
|
197 |
+
effnet_preprocess=effnet_preprocess,
|
198 |
+
clip_preprocess=clip_preprocess
|
199 |
+
)
|
200 |
+
|
201 |
+
def get_conditions(self, batch: dict, models: Models, extras: Extras, is_eval=False, is_unconditional=False,
|
202 |
+
eval_image_embeds=False, return_fields=None):
|
203 |
+
conditions = super().get_conditions(
|
204 |
+
batch, models, extras, is_eval, is_unconditional,
|
205 |
+
eval_image_embeds, return_fields=return_fields or ['clip_text', 'clip_text_pooled', 'clip_img']
|
206 |
+
)
|
207 |
+
return conditions
|
208 |
+
|
209 |
+
def setup_models(self, extras: Extras) -> Models: # configure model
|
210 |
+
|
211 |
+
dtype = getattr(torch, self.config.dtype) if self.config.dtype else torch.bfloat16
|
212 |
+
|
213 |
+
# EfficientNet encoderin
|
214 |
+
effnet = EfficientNetEncoder()
|
215 |
+
effnet_checkpoint = load_or_fail(self.config.effnet_checkpoint_path)
|
216 |
+
effnet.load_state_dict(effnet_checkpoint if 'state_dict' not in effnet_checkpoint else effnet_checkpoint['state_dict'])
|
217 |
+
effnet.eval().requires_grad_(False).to(self.device)
|
218 |
+
del effnet_checkpoint
|
219 |
+
|
220 |
+
# Previewer
|
221 |
+
previewer = Previewer()
|
222 |
+
previewer_checkpoint = load_or_fail(self.config.previewer_checkpoint_path)
|
223 |
+
previewer.load_state_dict(previewer_checkpoint if 'state_dict' not in previewer_checkpoint else previewer_checkpoint['state_dict'])
|
224 |
+
previewer.eval().requires_grad_(False).to(self.device)
|
225 |
+
del previewer_checkpoint
|
226 |
+
|
227 |
+
@contextmanager
|
228 |
+
def dummy_context():
|
229 |
+
yield None
|
230 |
+
|
231 |
+
loading_context = dummy_context if self.config.training else init_empty_weights
|
232 |
+
|
233 |
+
# Diffusion models
|
234 |
+
with loading_context():
|
235 |
+
generator_ema = None
|
236 |
+
if self.config.model_version == '3.6B':
|
237 |
+
generator = StageC()
|
238 |
+
if self.config.ema_start_iters is not None: # default setting
|
239 |
+
generator_ema = StageC()
|
240 |
+
elif self.config.model_version == '1B':
|
241 |
+
print('in line 155 1b light model', self.config.model_version )
|
242 |
+
generator = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]])
|
243 |
+
|
244 |
+
if self.config.ema_start_iters is not None and self.config.training:
|
245 |
+
generator_ema = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]])
|
246 |
+
else:
|
247 |
+
raise ValueError(f"Unknown model version {self.config.model_version}")
|
248 |
+
|
249 |
+
|
250 |
+
|
251 |
+
if loading_context is dummy_context:
|
252 |
+
generator.load_state_dict( load_or_fail(self.config.generator_checkpoint_path))
|
253 |
+
else:
|
254 |
+
for param_name, param in load_or_fail(self.config.generator_checkpoint_path).items():
|
255 |
+
set_module_tensor_to_device(generator, param_name, "cpu", value=param)
|
256 |
+
|
257 |
+
generator._init_extra_parameter()
|
258 |
+
generator = generator.to(torch.bfloat16).to(self.device)
|
259 |
+
|
260 |
+
|
261 |
+
train_norm = nn.ModuleList()
|
262 |
+
cnt_norm = 0
|
263 |
+
for mm in generator.modules():
|
264 |
+
if isinstance(mm, GlobalResponseNorm):
|
265 |
+
|
266 |
+
train_norm.append(Null_Model())
|
267 |
+
cnt_norm += 1
|
268 |
+
|
269 |
+
train_norm.append(generator.agg_net)
|
270 |
+
train_norm.append(generator.agg_net_up)
|
271 |
+
total = sum([ param.nelement() for param in train_norm.parameters()])
|
272 |
+
print('Trainable parameter', total / 1048576)
|
273 |
+
|
274 |
+
if os.path.exists(os.path.join(self.config.output_path, self.config.experiment_id, 'train_norm.safetensors')):
|
275 |
+
sdd = torch.load(os.path.join(self.config.output_path, self.config.experiment_id, 'train_norm.safetensors'), map_location='cpu')
|
276 |
+
collect_sd = {}
|
277 |
+
for k, v in sdd.items():
|
278 |
+
collect_sd[k[7:]] = v
|
279 |
+
train_norm.load_state_dict(collect_sd, strict=True)
|
280 |
+
|
281 |
+
|
282 |
+
train_norm.to(self.device).train().requires_grad_(True)
|
283 |
+
|
284 |
+
if generator_ema is not None:
|
285 |
+
|
286 |
+
generator_ema.load_state_dict(load_or_fail(self.config.generator_checkpoint_path))
|
287 |
+
generator_ema._init_extra_parameter()
|
288 |
+
|
289 |
+
|
290 |
+
pretrained_pth = os.path.join(self.config.output_path, self.config.experiment_id, 'generator.safetensors')
|
291 |
+
if os.path.exists(pretrained_pth):
|
292 |
+
print(pretrained_pth, 'exists')
|
293 |
+
generator_ema.load_state_dict(torch.load(pretrained_pth, map_location='cpu'))
|
294 |
+
|
295 |
+
|
296 |
+
generator_ema.eval().requires_grad_(False)
|
297 |
+
|
298 |
+
|
299 |
+
|
300 |
+
|
301 |
+
check_nan_inmodel(generator, 'generator')
|
302 |
+
|
303 |
+
|
304 |
+
|
305 |
+
if self.config.use_ddp and self.config.training:
|
306 |
+
|
307 |
+
train_norm = DDP(train_norm, device_ids=[self.device], find_unused_parameters=True)
|
308 |
+
|
309 |
+
# CLIP encoders
|
310 |
+
tokenizer = AutoTokenizer.from_pretrained(self.config.clip_text_model_name)
|
311 |
+
text_model = CLIPTextModelWithProjection.from_pretrained( self.config.clip_text_model_name).requires_grad_(False).to(dtype).to(self.device)
|
312 |
+
image_model = CLIPVisionModelWithProjection.from_pretrained(self.config.clip_image_model_name).requires_grad_(False).to(dtype).to(self.device)
|
313 |
+
|
314 |
+
return self.Models(
|
315 |
+
effnet=effnet, previewer=previewer, train_norm = train_norm,
|
316 |
+
generator=generator, tokenizer=tokenizer, text_model=text_model, image_model=image_model,
|
317 |
+
)
|
318 |
+
|
319 |
+
def setup_optimizers(self, extras: Extras, models: Models) -> TrainingCore.Optimizers:
|
320 |
+
|
321 |
+
|
322 |
+
params = []
|
323 |
+
params += list(models.train_norm.module.parameters())
|
324 |
+
|
325 |
+
optimizer = optim.AdamW(params, lr=self.config.lr)
|
326 |
+
|
327 |
+
return self.Optimizers(generator=optimizer)
|
328 |
+
|
329 |
+
def ema_update(self, ema_model, source_model, beta):
|
330 |
+
for param_src, param_ema in zip(source_model.parameters(), ema_model.parameters()):
|
331 |
+
param_ema.data.mul_(beta).add_(param_src.data, alpha = 1 - beta)
|
332 |
+
|
333 |
+
def sync_ema(self, ema_model):
|
334 |
+
for param in ema_model.parameters():
|
335 |
+
torch.distributed.all_reduce(param.data, op=torch.distributed.ReduceOp.SUM)
|
336 |
+
param.data /= torch.distributed.get_world_size()
|
337 |
+
def setup_optimizers_backup(self, extras: Extras, models: Models) -> TrainingCore.Optimizers:
|
338 |
+
|
339 |
+
|
340 |
+
optimizer = optim.AdamW(
|
341 |
+
models.generator.up_blocks.parameters() ,
|
342 |
+
lr=self.config.lr)
|
343 |
+
optimizer = self.load_optimizer(optimizer, 'generator_optim',
|
344 |
+
fsdp_model=models.generator if self.config.use_fsdp else None)
|
345 |
+
return self.Optimizers(generator=optimizer)
|
346 |
+
|
347 |
+
def setup_schedulers(self, extras: Extras, models: Models, optimizers: TrainingCore.Optimizers) -> Schedulers:
|
348 |
+
scheduler = GradualWarmupScheduler(optimizers.generator, multiplier=1, total_epoch=self.config.warmup_updates)
|
349 |
+
scheduler.last_epoch = self.info.total_steps
|
350 |
+
return self.Schedulers(generator=scheduler)
|
351 |
+
|
352 |
+
def setup_data(self, extras: Extras) -> WarpCore.Data:
|
353 |
+
# SETUP DATASET
|
354 |
+
dataset_path = self.config.webdataset_path
|
355 |
+
dataset = mydist_dataset(dataset_path, \
|
356 |
+
torchvision.transforms.ToTensor() if self.config.multi_aspect_ratio is not None \
|
357 |
+
else extras.transforms)
|
358 |
+
|
359 |
+
# SETUP DATALOADER
|
360 |
+
real_batch_size = self.config.batch_size // (self.world_size * self.config.grad_accum_steps)
|
361 |
+
|
362 |
+
sampler = DistributedSampler(dataset, rank=self.process_id, num_replicas = self.world_size, shuffle=True)
|
363 |
+
dataloader = DataLoader(
|
364 |
+
dataset, batch_size=real_batch_size, num_workers=8, pin_memory=True,
|
365 |
+
collate_fn=identity if self.config.multi_aspect_ratio is not None else None,
|
366 |
+
sampler = sampler
|
367 |
+
)
|
368 |
+
if self.is_main_node:
|
369 |
+
print(f"Training with batch size {self.config.batch_size} ({real_batch_size}/GPU)")
|
370 |
+
|
371 |
+
if self.config.multi_aspect_ratio is not None:
|
372 |
+
aspect_ratios = [float(Fraction(f)) for f in self.config.multi_aspect_ratio]
|
373 |
+
dataloader_iterator = Bucketeer(dataloader, density=[ss*ss for ss in self.config.image_size] , factor=32,
|
374 |
+
ratios=aspect_ratios, p_random_ratio=self.config.bucketeer_random_ratio,
|
375 |
+
interpolate_nearest=False) # , use_smartcrop=True)
|
376 |
+
else:
|
377 |
+
|
378 |
+
dataloader_iterator = iter(dataloader)
|
379 |
+
|
380 |
+
return self.Data(dataset=dataset, dataloader=dataloader, iterator=dataloader_iterator, sampler=sampler)
|
381 |
+
|
382 |
+
|
383 |
+
def models_to_save(self):
|
384 |
+
pass
|
385 |
+
def setup_ddp(self, experiment_id, single_gpu=False, rank=0):
|
386 |
+
|
387 |
+
if not single_gpu:
|
388 |
+
local_rank = rank
|
389 |
+
process_id = rank
|
390 |
+
world_size = get_world_size()
|
391 |
+
|
392 |
+
self.process_id = process_id
|
393 |
+
self.is_main_node = process_id == 0
|
394 |
+
self.device = torch.device(local_rank)
|
395 |
+
self.world_size = world_size
|
396 |
+
|
397 |
+
os.environ['MASTER_ADDR'] = 'localhost'
|
398 |
+
os.environ['MASTER_PORT'] = '41443'
|
399 |
+
torch.cuda.set_device(local_rank)
|
400 |
+
init_process_group(
|
401 |
+
backend="nccl",
|
402 |
+
rank=local_rank,
|
403 |
+
world_size=world_size,
|
404 |
+
)
|
405 |
+
print(f"[GPU {process_id}] READY")
|
406 |
+
else:
|
407 |
+
self.is_main_node = rank == 0
|
408 |
+
self.process_id = rank
|
409 |
+
self.device = torch.device('cuda:0')
|
410 |
+
self.world_size = 1
|
411 |
+
print("Running in single thread, DDP not enabled.")
|
412 |
+
# Training loop --------------------------------
|
413 |
+
def get_target_lr_size(self, ratio, std_size=24):
|
414 |
+
w, h = int(std_size / math.sqrt(ratio)), int(std_size * math.sqrt(ratio))
|
415 |
+
return (h * 32 , w * 32)
|
416 |
+
def forward_pass(self, data: WarpCore.Data, extras: Extras, models: Models):
|
417 |
+
#batch = next(data.iterator)
|
418 |
+
batch = data
|
419 |
+
ratio = batch['images'].shape[-2] / batch['images'].shape[-1]
|
420 |
+
shape_lr = self.get_target_lr_size(ratio)
|
421 |
+
#print('in line 485', shape_lr, ratio, batch['images'].shape)
|
422 |
+
with torch.no_grad():
|
423 |
+
conditions = self.get_conditions(batch, models, extras)
|
424 |
+
|
425 |
+
latents = self.encode_latents(batch, models, extras)
|
426 |
+
latents_lr = self.encode_latents(batch, models, extras,target_size=shape_lr)
|
427 |
+
|
428 |
+
noised, noise, target, logSNR, noise_cond, loss_weight = extras.gdf.diffuse(latents, shift=1, loss_shift=1)
|
429 |
+
noised_lr, noise_lr, target_lr, logSNR_lr, noise_cond_lr, loss_weight_lr = extras.gdf.diffuse(latents_lr, shift=1, loss_shift=1, t=torch.ones(latents.shape[0]).to(latents.device)*0.05, )
|
430 |
+
|
431 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
432 |
+
# 768 1536
|
433 |
+
require_cond = True
|
434 |
+
|
435 |
+
with torch.no_grad():
|
436 |
+
_, lr_enc_guide, lr_dec_guide = models.generator(noised_lr, noise_cond_lr, reuire_f=True, **conditions)
|
437 |
+
|
438 |
+
|
439 |
+
pred = models.generator(noised, noise_cond, reuire_f=False, lr_guide=(lr_enc_guide, lr_dec_guide) if require_cond else None , **conditions)
|
440 |
+
loss = nn.functional.mse_loss(pred, target, reduction='none').mean(dim=[1, 2, 3])
|
441 |
+
|
442 |
+
loss_adjusted = (loss * loss_weight ).mean() / self.config.grad_accum_steps
|
443 |
+
|
444 |
+
|
445 |
+
if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight):
|
446 |
+
extras.gdf.loss_weight.update_buckets(logSNR, loss)
|
447 |
+
|
448 |
+
return loss, loss_adjusted
|
449 |
+
|
450 |
+
def backward_pass(self, update, loss_adjusted, models: Models, optimizers: TrainingCore.Optimizers, schedulers: Schedulers):
|
451 |
+
|
452 |
+
|
453 |
+
if update:
|
454 |
+
|
455 |
+
torch.distributed.barrier()
|
456 |
+
loss_adjusted.backward()
|
457 |
+
|
458 |
+
grad_norm = nn.utils.clip_grad_norm_(models.train_norm.module.parameters(), 1.0)
|
459 |
+
|
460 |
+
optimizers_dict = optimizers.to_dict()
|
461 |
+
for k in optimizers_dict:
|
462 |
+
if k != 'training':
|
463 |
+
optimizers_dict[k].step()
|
464 |
+
schedulers_dict = schedulers.to_dict()
|
465 |
+
for k in schedulers_dict:
|
466 |
+
if k != 'training':
|
467 |
+
schedulers_dict[k].step()
|
468 |
+
for k in optimizers_dict:
|
469 |
+
if k != 'training':
|
470 |
+
optimizers_dict[k].zero_grad(set_to_none=True)
|
471 |
+
self.info.total_steps += 1
|
472 |
+
else:
|
473 |
+
|
474 |
+
loss_adjusted.backward()
|
475 |
+
|
476 |
+
grad_norm = torch.tensor(0.0).to(self.device)
|
477 |
+
|
478 |
+
return grad_norm
|
479 |
+
|
480 |
+
|
481 |
+
def encode_latents(self, batch: dict, models: Models, extras: Extras, target_size=None) -> torch.Tensor:
|
482 |
+
|
483 |
+
images = batch['images'].to(self.device)
|
484 |
+
if target_size is not None:
|
485 |
+
images = F.interpolate(images, target_size)
|
486 |
+
|
487 |
+
return models.effnet(extras.effnet_preprocess(images))
|
488 |
+
|
489 |
+
def decode_latents(self, latents: torch.Tensor, batch: dict, models: Models, extras: Extras) -> torch.Tensor:
|
490 |
+
return models.previewer(latents)
|
491 |
+
|
492 |
+
def __init__(self, rank=0, config_file_path=None, config_dict=None, device="cpu", training=True, world_size=1, ):
|
493 |
+
|
494 |
+
self.is_main_node = (rank == 0)
|
495 |
+
self.config: self.Config = self.setup_config(config_file_path, config_dict, training)
|
496 |
+
self.setup_ddp(self.config.experiment_id, single_gpu=world_size <= 1, rank=rank)
|
497 |
+
self.info: self.Info = self.setup_info()
|
498 |
+
|
499 |
+
|
500 |
+
|
501 |
+
def __call__(self, single_gpu=False):
|
502 |
+
|
503 |
+
if self.config.allow_tf32:
|
504 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
505 |
+
torch.backends.cudnn.allow_tf32 = True
|
506 |
+
|
507 |
+
if self.is_main_node:
|
508 |
+
print()
|
509 |
+
print("**STARTIG JOB WITH CONFIG:**")
|
510 |
+
print(yaml.dump(self.config.to_dict(), default_flow_style=False))
|
511 |
+
print("------------------------------------")
|
512 |
+
print()
|
513 |
+
print("**INFO:**")
|
514 |
+
print(yaml.dump(vars(self.info), default_flow_style=False))
|
515 |
+
print("------------------------------------")
|
516 |
+
print()
|
517 |
+
|
518 |
+
# SETUP STUFF
|
519 |
+
extras = self.setup_extras_pre()
|
520 |
+
assert extras is not None, "setup_extras_pre() must return a DTO"
|
521 |
+
|
522 |
+
|
523 |
+
|
524 |
+
data = self.setup_data(extras)
|
525 |
+
assert data is not None, "setup_data() must return a DTO"
|
526 |
+
if self.is_main_node:
|
527 |
+
print("**DATA:**")
|
528 |
+
print(yaml.dump({k:type(v).__name__ for k, v in data.to_dict().items()}, default_flow_style=False))
|
529 |
+
print("------------------------------------")
|
530 |
+
print()
|
531 |
+
|
532 |
+
models = self.setup_models(extras)
|
533 |
+
assert models is not None, "setup_models() must return a DTO"
|
534 |
+
if self.is_main_node:
|
535 |
+
print("**MODELS:**")
|
536 |
+
print(yaml.dump({
|
537 |
+
k:f"{type(v).__name__} - {f'trainable params {sum(p.numel() for p in v.parameters() if p.requires_grad)}' if isinstance(v, nn.Module) else 'Not a nn.Module'}" for k, v in models.to_dict().items()
|
538 |
+
}, default_flow_style=False))
|
539 |
+
print("------------------------------------")
|
540 |
+
print()
|
541 |
+
|
542 |
+
|
543 |
+
|
544 |
+
optimizers = self.setup_optimizers(extras, models)
|
545 |
+
assert optimizers is not None, "setup_optimizers() must return a DTO"
|
546 |
+
if self.is_main_node:
|
547 |
+
print("**OPTIMIZERS:**")
|
548 |
+
print(yaml.dump({k:type(v).__name__ for k, v in optimizers.to_dict().items()}, default_flow_style=False))
|
549 |
+
print("------------------------------------")
|
550 |
+
print()
|
551 |
+
|
552 |
+
schedulers = self.setup_schedulers(extras, models, optimizers)
|
553 |
+
assert schedulers is not None, "setup_schedulers() must return a DTO"
|
554 |
+
if self.is_main_node:
|
555 |
+
print("**SCHEDULERS:**")
|
556 |
+
print(yaml.dump({k:type(v).__name__ for k, v in schedulers.to_dict().items()}, default_flow_style=False))
|
557 |
+
print("------------------------------------")
|
558 |
+
print()
|
559 |
+
|
560 |
+
post_extras =self.setup_extras_post(extras, models, optimizers, schedulers)
|
561 |
+
assert post_extras is not None, "setup_extras_post() must return a DTO"
|
562 |
+
extras = self.Extras.from_dict({ **extras.to_dict(),**post_extras.to_dict() })
|
563 |
+
if self.is_main_node:
|
564 |
+
print("**EXTRAS:**")
|
565 |
+
print(yaml.dump({k:f"{v}" for k, v in extras.to_dict().items()}, default_flow_style=False))
|
566 |
+
print("------------------------------------")
|
567 |
+
print()
|
568 |
+
# -------
|
569 |
+
|
570 |
+
# TRAIN
|
571 |
+
if self.is_main_node:
|
572 |
+
print("**TRAINING STARTING...**")
|
573 |
+
self.train(data, extras, models, optimizers, schedulers)
|
574 |
+
|
575 |
+
if single_gpu is False:
|
576 |
+
barrier()
|
577 |
+
destroy_process_group()
|
578 |
+
if self.is_main_node:
|
579 |
+
print()
|
580 |
+
print("------------------------------------")
|
581 |
+
print()
|
582 |
+
print("**TRAINING COMPLETE**")
|
583 |
+
|
584 |
+
|
585 |
+
|
586 |
+
def train(self, data: WarpCore.Data, extras: WarpCore.Extras, models: Models, optimizers: TrainingCore.Optimizers,
|
587 |
+
schedulers: WarpCore.Schedulers):
|
588 |
+
start_iter = self.info.iter + 1
|
589 |
+
max_iters = self.config.updates * self.config.grad_accum_steps
|
590 |
+
if self.is_main_node:
|
591 |
+
print(f"STARTING AT STEP: {start_iter}/{max_iters}")
|
592 |
+
|
593 |
+
|
594 |
+
if self.is_main_node:
|
595 |
+
create_folder_if_necessary(f'{self.config.output_path}/{self.config.experiment_id}/')
|
596 |
+
|
597 |
+
models.generator.train()
|
598 |
+
|
599 |
+
iter_cnt = 0
|
600 |
+
epoch_cnt = 0
|
601 |
+
models.train_norm.train()
|
602 |
+
while True:
|
603 |
+
epoch_cnt += 1
|
604 |
+
if self.world_size > 1:
|
605 |
+
|
606 |
+
data.sampler.set_epoch(epoch_cnt)
|
607 |
+
for ggg in range(len(data.dataloader)):
|
608 |
+
iter_cnt += 1
|
609 |
+
loss, loss_adjusted = self.forward_pass(next(data.iterator), extras, models)
|
610 |
+
grad_norm = self.backward_pass(
|
611 |
+
iter_cnt % self.config.grad_accum_steps == 0 or iter_cnt == max_iters, loss_adjusted,
|
612 |
+
models, optimizers, schedulers
|
613 |
+
)
|
614 |
+
|
615 |
+
self.info.iter = iter_cnt
|
616 |
+
|
617 |
+
|
618 |
+
# UPDATE LOSS METRICS
|
619 |
+
self.info.ema_loss = loss.mean().item() if self.info.ema_loss is None else self.info.ema_loss * 0.99 + loss.mean().item() * 0.01
|
620 |
+
|
621 |
+
#print('in line 666 after ema loss', grad_norm, loss.mean().item(), iter_cnt, self.info.ema_loss)
|
622 |
+
if self.is_main_node and np.isnan(loss.mean().item()) or np.isnan(grad_norm.item()):
|
623 |
+
print(f" NaN value encountered in training run {self.info.wandb_run_id}", \
|
624 |
+
f"Loss {loss.mean().item()} - Grad Norm {grad_norm.item()}. Run {self.info.wandb_run_id}")
|
625 |
+
|
626 |
+
if self.is_main_node:
|
627 |
+
logs = {
|
628 |
+
'loss': self.info.ema_loss,
|
629 |
+
'backward_loss': loss_adjusted.mean().item(),
|
630 |
+
'ema_loss': self.info.ema_loss,
|
631 |
+
'raw_ori_loss': loss.mean().item(),
|
632 |
+
'grad_norm': grad_norm.item(),
|
633 |
+
'lr': optimizers.generator.param_groups[0]['lr'] if optimizers.generator is not None else 0,
|
634 |
+
'total_steps': self.info.total_steps,
|
635 |
+
}
|
636 |
+
if iter_cnt % (self.config.save_every) == 0:
|
637 |
+
|
638 |
+
print(iter_cnt, max_iters, logs, epoch_cnt, )
|
639 |
+
|
640 |
+
|
641 |
+
|
642 |
+
if iter_cnt == 1 or iter_cnt % (self.config.save_every ) == 0 or iter_cnt == max_iters:
|
643 |
+
|
644 |
+
# SAVE AND CHECKPOINT STUFF
|
645 |
+
if np.isnan(loss.mean().item()):
|
646 |
+
if self.is_main_node and self.config.wandb_project is not None:
|
647 |
+
print(f"NaN value encountered in training run {self.info.wandb_run_id}", \
|
648 |
+
f"Loss {loss.mean().item()} - Grad Norm {grad_norm.item()}. Run {self.info.wandb_run_id}")
|
649 |
+
|
650 |
+
else:
|
651 |
+
if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight):
|
652 |
+
self.info.adaptive_loss = {
|
653 |
+
'bucket_ranges': extras.gdf.loss_weight.bucket_ranges.tolist(),
|
654 |
+
'bucket_losses': extras.gdf.loss_weight.bucket_losses.tolist(),
|
655 |
+
}
|
656 |
+
|
657 |
+
|
658 |
+
|
659 |
+
if self.is_main_node and iter_cnt % (self.config.save_every * self.config.grad_accum_steps) == 0:
|
660 |
+
print('save model', iter_cnt, iter_cnt % (self.config.save_every * self.config.grad_accum_steps), self.config.save_every, self.config.grad_accum_steps )
|
661 |
+
torch.save(models.train_norm.state_dict(), \
|
662 |
+
f'{self.config.output_path}/{self.config.experiment_id}/train_norm.safetensors')
|
663 |
+
|
664 |
+
torch.save(models.train_norm.state_dict(), \
|
665 |
+
f'{self.config.output_path}/{self.config.experiment_id}/train_norm_{iter_cnt}.safetensors')
|
666 |
+
|
667 |
+
|
668 |
+
if iter_cnt == 1 or iter_cnt % (self.config.save_every* self.config.grad_accum_steps) == 0 or iter_cnt == max_iters:
|
669 |
+
|
670 |
+
if self.is_main_node:
|
671 |
+
|
672 |
+
self.sample(models, data, extras)
|
673 |
+
|
674 |
+
|
675 |
+
if self.info.iter >= max_iters:
|
676 |
+
break
|
677 |
+
|
678 |
+
def sample(self, models: Models, data: WarpCore.Data, extras: Extras):
|
679 |
+
|
680 |
+
|
681 |
+
models.generator.eval()
|
682 |
+
models.train_norm.eval()
|
683 |
+
with torch.no_grad():
|
684 |
+
batch = next(data.iterator)
|
685 |
+
ratio = batch['images'].shape[-2] / batch['images'].shape[-1]
|
686 |
+
|
687 |
+
shape_lr = self.get_target_lr_size(ratio)
|
688 |
+
conditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False)
|
689 |
+
unconditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
|
690 |
+
|
691 |
+
latents = self.encode_latents(batch, models, extras)
|
692 |
+
latents_lr = self.encode_latents(batch, models, extras, target_size = shape_lr)
|
693 |
+
|
694 |
+
|
695 |
+
if self.is_main_node:
|
696 |
+
|
697 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
698 |
+
|
699 |
+
*_, (sampled, _, _, sampled_lr) = extras.gdf.sample(
|
700 |
+
models.generator, conditions,
|
701 |
+
latents.shape, latents_lr.shape,
|
702 |
+
unconditions, device=self.device, **extras.sampling_configs
|
703 |
+
)
|
704 |
+
|
705 |
+
|
706 |
+
|
707 |
+
|
708 |
+
if self.is_main_node:
|
709 |
+
print('sampling results hr latent shape', latents.shape, 'lr latent shape', latents_lr.shape, )
|
710 |
+
noised_images = torch.cat(
|
711 |
+
[self.decode_latents(latents[i:i + 1].float(), batch, models, extras) for i in range(len(latents))], dim=0)
|
712 |
+
|
713 |
+
sampled_images = torch.cat(
|
714 |
+
[self.decode_latents(sampled[i:i + 1].float(), batch, models, extras) for i in range(len(sampled))], dim=0)
|
715 |
+
|
716 |
+
|
717 |
+
noised_images_lr = torch.cat(
|
718 |
+
[self.decode_latents(latents_lr[i:i + 1].float(), batch, models, extras) for i in range(len(latents_lr))], dim=0)
|
719 |
+
|
720 |
+
sampled_images_lr = torch.cat(
|
721 |
+
[self.decode_latents(sampled_lr[i:i + 1].float(), batch, models, extras) for i in range(len(sampled_lr))], dim=0)
|
722 |
+
|
723 |
+
images = batch['images']
|
724 |
+
if images.size(-1) != noised_images.size(-1) or images.size(-2) != noised_images.size(-2):
|
725 |
+
images = nn.functional.interpolate(images, size=noised_images.shape[-2:], mode='bicubic')
|
726 |
+
images_lr = nn.functional.interpolate(images, size=noised_images_lr.shape[-2:], mode='bicubic')
|
727 |
+
|
728 |
+
collage_img = torch.cat([
|
729 |
+
torch.cat([i for i in images.cpu()], dim=-1),
|
730 |
+
torch.cat([i for i in noised_images.cpu()], dim=-1),
|
731 |
+
torch.cat([i for i in sampled_images.cpu()], dim=-1),
|
732 |
+
], dim=-2)
|
733 |
+
|
734 |
+
collage_img_lr = torch.cat([
|
735 |
+
torch.cat([i for i in images_lr.cpu()], dim=-1),
|
736 |
+
torch.cat([i for i in noised_images_lr.cpu()], dim=-1),
|
737 |
+
torch.cat([i for i in sampled_images_lr.cpu()], dim=-1),
|
738 |
+
], dim=-2)
|
739 |
+
|
740 |
+
torchvision.utils.save_image(collage_img, f'{self.config.output_path}/{self.config.experiment_id}/{self.info.total_steps:06d}.jpg')
|
741 |
+
torchvision.utils.save_image(collage_img_lr, f'{self.config.output_path}/{self.config.experiment_id}/{self.info.total_steps:06d}_lr.jpg')
|
742 |
+
|
743 |
+
|
744 |
+
models.generator.train()
|
745 |
+
models.train_norm.train()
|
746 |
+
print('finish sampling')
|
747 |
+
|
748 |
+
|
749 |
+
|
750 |
+
def sample_fortest(self, models: Models, extras: Extras, hr_shape, lr_shape, batch, eval_image_embeds=False):
|
751 |
+
|
752 |
+
|
753 |
+
models.generator.eval()
|
754 |
+
|
755 |
+
with torch.no_grad():
|
756 |
+
|
757 |
+
if self.is_main_node:
|
758 |
+
conditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=eval_image_embeds)
|
759 |
+
unconditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
|
760 |
+
|
761 |
+
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
|
762 |
+
|
763 |
+
*_, (sampled, _, _, sampled_lr) = extras.gdf.sample(
|
764 |
+
models.generator, conditions,
|
765 |
+
hr_shape, lr_shape,
|
766 |
+
unconditions, device=self.device, **extras.sampling_configs
|
767 |
+
)
|
768 |
+
|
769 |
+
if models.generator_ema is not None:
|
770 |
+
|
771 |
+
*_, (sampled_ema, _, _, sampled_ema_lr) = extras.gdf.sample(
|
772 |
+
models.generator_ema, conditions,
|
773 |
+
latents.shape, latents_lr.shape,
|
774 |
+
unconditions, device=self.device, **extras.sampling_configs
|
775 |
+
)
|
776 |
+
|
777 |
+
else:
|
778 |
+
sampled_ema = sampled
|
779 |
+
sampled_ema_lr = sampled_lr
|
780 |
+
|
781 |
+
return sampled, sampled_lr
|
782 |
+
def main_worker(rank, cfg):
|
783 |
+
print("Launching Script in main worker")
|
784 |
+
|
785 |
+
warpcore = WurstCore(
|
786 |
+
config_file_path=cfg, rank=rank, world_size = get_world_size()
|
787 |
+
)
|
788 |
+
# core.fsdp_defaults['sharding_strategy'] = ShardingStrategy.NO_SHARD
|
789 |
+
|
790 |
+
# RUN TRAINING
|
791 |
+
warpcore(get_world_size()==1)
|
792 |
+
|
793 |
+
if __name__ == '__main__':
|
794 |
+
print('launch multi process')
|
795 |
+
# os.environ["OMP_NUM_THREADS"] = "1"
|
796 |
+
# os.environ["MKL_NUM_THREADS"] = "1"
|
797 |
+
#dist.init_process_group(backend="nccl")
|
798 |
+
#torch.backends.cudnn.benchmark = True
|
799 |
+
#train/train_c_my.py
|
800 |
+
#mp.set_sharing_strategy('file_system')
|
801 |
+
|
802 |
+
if get_master_ip() == "127.0.0.1":
|
803 |
+
# manually launch distributed processes
|
804 |
+
mp.spawn(main_worker, nprocs=get_world_size(), args=(sys.argv[1] if len(sys.argv) > 1 else None, ))
|
805 |
+
else:
|
806 |
+
main_worker(0, sys.argv[1] if len(sys.argv) > 1 else None, )
|
|