openfree's picture

openfree PRO

openfree

AI & ML interests

None yet

Recent Activity

reacted to their post with ❀️ about 6 hours ago
Agentic AI Era: Analyzing MCP vs MCO πŸš€ Hello everyone! With the rapid advancement of AI agent technology, two architectures have come into the spotlight: MCP (Model Context Protocol) and MCO (Model Context Open-json). Today, we’ll introduce the key features and differences of these two approaches. https://huggingface.co/spaces/VIDraft/Agentic-AI-CHAT MCP: The Traditional Approach πŸ›οΈ Centralized Function Registry: All functions are hardcoded into the core system. Static Function Definitions & Tight Coupling: New features require changes to the core application code, limiting scalability. Monolithic Design: Complex deployment and version management can cause a single error to affect the whole system. Code Example: '''py FUNCTION_REGISTRY = { "existing_function": existing_function, "new_function": new_function # Adding a new function } ''' MCO: A Revolutionary Approach πŸ†• JSON-based Function Definitions: Function details are stored in external JSON files, enabling dynamic module loading. Loose Coupling & Microservices: Each function can be developed, tested, and deployed as an independent module. Flexible Scalability: Add new features by simply updating the JSON and module files, without modifying the core system. JSON Example: [ { "name": "analyze_sentiment", "module_path": "nlp_tools", "func_name_in_module": "sentiment_analysis", "example_usage": "analyze_sentiment(text=\"I love this product!\")" } ] Why MCO? πŸ’‘ Enhanced Development Efficiency: Developers can focus on their own modules with independent testing and deployment. Simplified Error Management: Errors remain confined within their modules, enabling quick hotfixes. Future-Proofing: With potential features like remote function calls (RPC), access control, auto-documentation, and a function marketplace, MCO paves the way for rapid innovation. Practical Use & Community 🀝 The MCO implementation has been successfully tested on Vidraft’s LLM (based on Google Gemma-3)
reacted to their post with πŸ‘€ about 6 hours ago
Agentic AI Era: Analyzing MCP vs MCO πŸš€ Hello everyone! With the rapid advancement of AI agent technology, two architectures have come into the spotlight: MCP (Model Context Protocol) and MCO (Model Context Open-json). Today, we’ll introduce the key features and differences of these two approaches. https://huggingface.co/spaces/VIDraft/Agentic-AI-CHAT MCP: The Traditional Approach πŸ›οΈ Centralized Function Registry: All functions are hardcoded into the core system. Static Function Definitions & Tight Coupling: New features require changes to the core application code, limiting scalability. Monolithic Design: Complex deployment and version management can cause a single error to affect the whole system. Code Example: '''py FUNCTION_REGISTRY = { "existing_function": existing_function, "new_function": new_function # Adding a new function } ''' MCO: A Revolutionary Approach πŸ†• JSON-based Function Definitions: Function details are stored in external JSON files, enabling dynamic module loading. Loose Coupling & Microservices: Each function can be developed, tested, and deployed as an independent module. Flexible Scalability: Add new features by simply updating the JSON and module files, without modifying the core system. JSON Example: [ { "name": "analyze_sentiment", "module_path": "nlp_tools", "func_name_in_module": "sentiment_analysis", "example_usage": "analyze_sentiment(text=\"I love this product!\")" } ] Why MCO? πŸ’‘ Enhanced Development Efficiency: Developers can focus on their own modules with independent testing and deployment. Simplified Error Management: Errors remain confined within their modules, enabling quick hotfixes. Future-Proofing: With potential features like remote function calls (RPC), access control, auto-documentation, and a function marketplace, MCO paves the way for rapid innovation. Practical Use & Community 🀝 The MCO implementation has been successfully tested on Vidraft’s LLM (based on Google Gemma-3)
reacted to their post with πŸš€ about 6 hours ago
Agentic AI Era: Analyzing MCP vs MCO πŸš€ Hello everyone! With the rapid advancement of AI agent technology, two architectures have come into the spotlight: MCP (Model Context Protocol) and MCO (Model Context Open-json). Today, we’ll introduce the key features and differences of these two approaches. https://huggingface.co/spaces/VIDraft/Agentic-AI-CHAT MCP: The Traditional Approach πŸ›οΈ Centralized Function Registry: All functions are hardcoded into the core system. Static Function Definitions & Tight Coupling: New features require changes to the core application code, limiting scalability. Monolithic Design: Complex deployment and version management can cause a single error to affect the whole system. Code Example: '''py FUNCTION_REGISTRY = { "existing_function": existing_function, "new_function": new_function # Adding a new function } ''' MCO: A Revolutionary Approach πŸ†• JSON-based Function Definitions: Function details are stored in external JSON files, enabling dynamic module loading. Loose Coupling & Microservices: Each function can be developed, tested, and deployed as an independent module. Flexible Scalability: Add new features by simply updating the JSON and module files, without modifying the core system. JSON Example: [ { "name": "analyze_sentiment", "module_path": "nlp_tools", "func_name_in_module": "sentiment_analysis", "example_usage": "analyze_sentiment(text=\"I love this product!\")" } ] Why MCO? πŸ’‘ Enhanced Development Efficiency: Developers can focus on their own modules with independent testing and deployment. Simplified Error Management: Errors remain confined within their modules, enabling quick hotfixes. Future-Proofing: With potential features like remote function calls (RPC), access control, auto-documentation, and a function marketplace, MCO paves the way for rapid innovation. Practical Use & Community 🀝 The MCO implementation has been successfully tested on Vidraft’s LLM (based on Google Gemma-3)
View all activity

Organizations

ginigen's profile picture VIDraft's profile picture korea forestry's profile picture PowergenAI's profile picture

Posts 24

view post
Post
1235
Agentic AI Era: Analyzing MCP vs MCO πŸš€

Hello everyone!
With the rapid advancement of AI agent technology, two architectures have come into the spotlight: MCP (Model Context Protocol) and MCO (Model Context Open-json). Today, we’ll introduce the key features and differences of these two approaches.

VIDraft/Agentic-AI-CHAT

MCP: The Traditional Approach πŸ›οΈ
Centralized Function Registry: All functions are hardcoded into the core system.

Static Function Definitions & Tight Coupling: New features require changes to the core application code, limiting scalability.

Monolithic Design: Complex deployment and version management can cause a single error to affect the whole system.

Code Example:
'''py
FUNCTION_REGISTRY = {
"existing_function": existing_function,
"new_function": new_function # Adding a new function
}
'''

MCO: A Revolutionary Approach πŸ†•
JSON-based Function Definitions: Function details are stored in external JSON files, enabling dynamic module loading.

Loose Coupling & Microservices: Each function can be developed, tested, and deployed as an independent module.

Flexible Scalability: Add new features by simply updating the JSON and module files, without modifying the core system.

JSON Example:
[
{
"name": "analyze_sentiment",
"module_path": "nlp_tools",
"func_name_in_module": "sentiment_analysis",
"example_usage": "analyze_sentiment(text=\"I love this product!\")"
}
]

Why MCO? πŸ’‘
Enhanced Development Efficiency: Developers can focus on their own modules with independent testing and deployment.

Simplified Error Management: Errors remain confined within their modules, enabling quick hotfixes.

Future-Proofing: With potential features like remote function calls (RPC), access control, auto-documentation, and a function marketplace, MCO paves the way for rapid innovation.

Practical Use & Community 🀝
The MCO implementation has been successfully tested on Vidraft’s LLM (based on Google Gemma-3)
view post
Post
7685
πŸš€ Llama-4 Model-Based Agentic AI System Released!

πŸ”₯ Introducing the Latest Llama-4 Models
Hello AI enthusiasts! Today we're excited to introduce our free API service powered by the cutting-edge Llama-4-Maverick-17B and Llama-4-Scout-17B models! These state-of-the-art models will upgrade your AI experience with remarkable stability and speed.

Link1: openfree/Llama-4-Maverick-17B-Research
Link2: openfree/Llama-4-Scout-17B-Research

🧠 The Innovation of Agentic AI: Deep Research Feature
The standout feature of our service is the revolutionary "Deep Research" functionality! This innovative Agentic AI system includes:

πŸ” Optimized Keyword Extraction: LLM automatically generates the most effective keywords for searches
🌐 Real-time Web Search: Collects the latest information through the SerpHouse API
πŸ“Š Intelligent Information Analysis: Precise analysis utilizing the LLM's reasoning capabilities based on collected information
πŸ“ Contextualized Response Generation: Provides accurate answers incorporating the latest information from search results

⚑ Key Advantages

πŸ’― Free API Service: Stable and fast LLM service through Fireworks AI
🧩 Easy Integration: Accessible through a simple Gradio interface
πŸ”„ Streaming Responses: Minimized waiting time with real-time generated responses
🌍 Multilingual Support: Automatic detection and processing of various languages including Korean

πŸ› οΈ Technical Features
The Llama-4-Maverick-17B model supports a context window of up to 20,480 tokens and automatically integrates web search results to always respond with the most current information. The model analyzes collected information through complex reasoning processes and constructs the most appropriate response to user queries.

🀝 Community Participation
For more information and discussions, please join our Discord community (https://discord.gg/openfreeai)! Let's shape the future of AI together!

Start now!