File size: 10,730 Bytes
6e251da c900cba 833e3ae c900cba 6e251da 833e3ae 6e251da c900cba 833e3ae c900cba 833e3ae c900cba 8e69506 833e3ae 8e69506 b84d2ee 833e3ae 8e69506 833e3ae b84d2ee 833e3ae b84d2ee 833e3ae b84d2ee 833e3ae 6e251da 833e3ae 6e251da b84d2ee 833e3ae 098ecf6 833e3ae 098ecf6 833e3ae 098ecf6 833e3ae 098ecf6 833e3ae 098ecf6 c900cba 833e3ae 6e251da c900cba 833e3ae b84d2ee 79ab49c 6e251da c900cba b1326c8 6e251da b1326c8 1803e28 b1326c8 1803e28 b1326c8 833e3ae b1326c8 b84d2ee 833e3ae b84d2ee 833e3ae b1326c8 833e3ae 79ab49c b1326c8 79ab49c b1326c8 79ab49c b1326c8 79ab49c 833e3ae b84d2ee 833e3ae b84d2ee 833e3ae b84d2ee 79ab49c 833e3ae b84d2ee 833e3ae b84d2ee fca81c0 9b66cdf b84d2ee 833e3ae b84d2ee 55cad48 833e3ae b84d2ee 833e3ae b1326c8 79ab49c b1326c8 833e3ae 79ab49c b1326c8 833e3ae 79ab49c b1326c8 833e3ae 79ab49c 833e3ae b1326c8 833e3ae b1326c8 833e3ae 6e251da 833e3ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import streamlit as st
import cv2
import numpy as np
import tempfile
from PIL import Image
import torch
import torch.nn as nn
from torchvision import transforms, models
import time
from collections import deque
import yaml
from ultralytics import YOLO
# Set page config
st.set_page_config(
page_title="Advanced Dog Language Understanding",
page_icon="π",
layout="wide"
)
class BehaviorDetector(nn.Module):
def __init__(self, num_classes):
super(BehaviorDetector, self).__init__()
# Use EfficientNet as base model (better performance than ResNet)
self.base_model = models.efficientnet_b0(pretrained=True)
# Replace classifier
num_features = self.base_model.classifier[1].in_features
self.base_model.classifier = nn.Sequential(
nn.Dropout(p=0.2),
nn.Linear(num_features, num_classes)
)
def forward(self, x):
return torch.sigmoid(self.base_model(x))
class DogBehaviorAnalyzer:
def __init__(self, model_path=None):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Initialize YOLO model for dog detection (optional)
try:
self.yolo_model = YOLO(model_path) if model_path else None
except Exception as e:
st.warning("YOLO model not found. Running without dog detection.")
self.yolo_model = None
# Initialize behavior classifier
self.num_behaviors = 5
try:
self.behavior_model = BehaviorDetector(self.num_behaviors).to(self.device)
except Exception as e:
st.warning("Error loading behavior model. Using default classifier.")
self.behavior_model = models.resnet18(pretrained=True)
num_features = self.behavior_model.fc.in_features
self.behavior_model.fc = nn.Linear(num_features, self.num_behaviors)
self.behavior_model = self.behavior_model.to(self.device)
self.behavior_model.eval()
# Define sophisticated transforms
self.transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
transforms.RandomHorizontalFlip(p=0.3),
transforms.ColorJitter(brightness=0.2, contrast=0.2)
])
# Behavior definitions with confidence thresholds
self.behaviors = {
'tail_wagging': {'threshold': 0.75, 'description': 'Your dog is displaying happiness and excitement!'},
'barking': {'threshold': 0.8, 'description': 'Your dog is trying to communicate or alert you.'},
'ears_perked': {'threshold': 0.7, 'description': 'Your dog is alert and interested in something.'},
'lying_down': {'threshold': 0.85, 'description': 'Your dog is relaxed and comfortable.'},
'jumping': {'threshold': 0.8, 'description': 'Your dog is energetic and playful!'}
}
# Temporal smoothing using sliding window
self.behavior_history = {behavior: deque(maxlen=5) for behavior in self.behaviors.keys()}
def preprocess_frame(self, frame):
"""Advanced frame preprocessing"""
# Convert BGR to RGB
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Apply adaptive histogram equalization
lab = cv2.cvtColor(rgb_frame, cv2.COLOR_RGB2LAB)
l, a, b = cv2.split(lab)
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
cl = clahe.apply(l)
enhanced = cv2.merge((cl,a,b))
enhanced = cv2.cvtColor(enhanced, cv2.COLOR_LAB2RGB)
return Image.fromarray(enhanced)
def detect_dog(self, frame):
"""Detect dog in frame using YOLO"""
if self.yolo_model is None:
return True # Skip detection if no model
results = self.yolo_model(frame)
return len(results) > 0 and any(result.boxes for result in results)
def analyze_frame(self, frame):
"""Analyze frame with temporal smoothing and confidence thresholds"""
# First detect if dog is present
if not self.detect_dog(frame):
return []
# Preprocess frame
processed_frame = self.preprocess_frame(frame)
input_tensor = self.transform(processed_frame).unsqueeze(0).to(self.device)
with torch.no_grad():
predictions = self.behavior_model(input_tensor).squeeze().cpu().numpy()
# Update behavior history
for behavior, pred in zip(self.behaviors.keys(), predictions):
self.behavior_history[behavior].append(pred)
# Apply temporal smoothing and thresholds
detected_behaviors = []
for behavior, history in self.behavior_history.items():
if len(history) > 0:
avg_conf = sum(history) / len(history)
if avg_conf > self.behaviors[behavior]['threshold']:
detected_behaviors.append((behavior, avg_conf))
return detected_behaviors
def main():
st.title("π Advanced Dog Language Understanding")
st.write("Upload a video of your dog for detailed behavior analysis!")
analyzer = DogBehaviorAnalyzer()
# Add model confidence control
confidence_threshold = st.sidebar.slider(
"Detection Confidence Threshold",
min_value=0.5,
max_value=0.95,
value=0.7,
step=0.05
)
video_file = st.file_uploader("Upload Video", type=['mp4', 'avi', 'mov'])
if video_file is not None:
tfile = tempfile.NamedTemporaryFile(delete=False)
tfile.write(video_file.read())
cap = cv2.VideoCapture(tfile.name)
col1, col2 = st.columns(2)
with col1:
st.subheader("Video Analysis")
video_placeholder = st.empty()
with col2:
st.subheader("Real-time Behavior Detection")
analysis_placeholder = st.empty()
progress_bar = st.progress(0)
behavior_counts = {behavior: 0 for behavior in analyzer.behaviors.keys()}
confidence_history = {behavior: [] for behavior in analyzer.behaviors.keys()}
frame_count = 0
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
progress = frame_count / total_frames
progress_bar.progress(progress)
# Update video preview with annotations
annotated_frame = frame.copy()
detected_behaviors = analyzer.analyze_frame(frame)
# Draw behavior labels on frame
y_pos = 30
for behavior, conf in detected_behaviors:
if conf > confidence_threshold:
behavior_counts[behavior] += 1
confidence_history[behavior].append(conf)
cv2.putText(annotated_frame,
f"{behavior.replace('_', ' ').title()}: {conf:.2f}",
(10, y_pos),
cv2.FONT_HERSHEY_SIMPLEX,
0.7,
(0, 255, 0),
2)
y_pos += 30
video_placeholder.image(
cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB),
channels="RGB",
use_container_width=True
)
# Update analysis display with confidence scores
analysis_text = "Detected Behaviors:\n\n"
for behavior, count in behavior_counts.items():
if count > 0:
avg_conf = sum(confidence_history[behavior]) / len(confidence_history[behavior])
analysis_text += f"β’ {behavior.replace('_', ' ').title()}:\n"
analysis_text += f" Count: {count} | Avg Confidence: {avg_conf:.2f}\n"
analysis_text += f" {analyzer.behaviors[behavior]['description']}\n\n"
analysis_placeholder.text_area(
"Analysis Results",
analysis_text,
height=300,
key=f"analysis_text_{frame_count}"
)
time.sleep(0.05)
cap.release()
# Final analysis
st.subheader("Comprehensive Analysis")
# Create detailed metrics
col1, col2, col3 = st.columns(3)
with col1:
most_common = max(behavior_counts.items(), key=lambda x: x[1])[0]
st.metric("Primary Behavior", most_common.replace('_', ' ').title())
with col2:
total_behaviors = sum(behavior_counts.values())
st.metric("Total Behaviors", total_behaviors)
with col3:
avg_confidence = np.mean([np.mean(conf) for conf in confidence_history.values() if conf])
st.metric("Average Confidence", f"{avg_confidence:.2%}")
# Behavior distribution chart
st.subheader("Behavior Distribution")
behavior_data = {k.replace('_', ' ').title(): v for k, v in behavior_counts.items() if v > 0}
st.bar_chart(behavior_data)
# Recommendations based on analysis
st.subheader("Personalized Recommendations")
if total_behaviors > 0:
st.write("Based on the detailed analysis, here are tailored recommendations:")
# Generate specific recommendations based on detected behaviors
recommendations = []
if behavior_counts['tail_wagging'] > total_behaviors * 0.3:
recommendations.append("β’ Your dog shows frequent happiness - great time for training!")
if behavior_counts['barking'] > total_behaviors * 0.2:
recommendations.append("β’ Consider quiet command training to manage barking")
if behavior_counts['jumping'] > total_behaviors * 0.25:
recommendations.append("β’ Focus on calm behavior reinforcement")
for rec in recommendations:
st.write(rec)
else:
st.write("No clear behaviors detected. Try recording with better lighting and closer camera angle.")
if __name__ == "__main__":
main()
|