Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import tempfile
|
6 |
+
import time
|
7 |
+
|
8 |
+
class DogLanguageInterpreter:
|
9 |
+
def __init__(self):
|
10 |
+
# Initialize any models or configurations here
|
11 |
+
self.emotions = {
|
12 |
+
'tail_wagging': 'Happy and excited',
|
13 |
+
'ears_perked': 'Alert and interested',
|
14 |
+
'lying_down': 'Relaxed or tired',
|
15 |
+
'barking': 'Trying to communicate',
|
16 |
+
'jumping': 'Enthusiastic and playful'
|
17 |
+
}
|
18 |
+
|
19 |
+
def analyze_video(self, video_file):
|
20 |
+
# Placeholder for video analysis logic
|
21 |
+
# In a real implementation, this would use CV models
|
22 |
+
return {
|
23 |
+
'primary_emotion': 'Happy and excited',
|
24 |
+
'confidence': 0.85,
|
25 |
+
'actions_detected': ['tail_wagging', 'jumping'],
|
26 |
+
'recommendations': [
|
27 |
+
'Your dog seems very playful!',
|
28 |
+
'Consider engaging in some active play',
|
29 |
+
'Reward this positive energy with treats'
|
30 |
+
]
|
31 |
+
}
|
32 |
+
|
33 |
+
def main():
|
34 |
+
st.set_page_config(
|
35 |
+
page_title="Dog Language Interpreter",
|
36 |
+
page_icon="π",
|
37 |
+
layout="wide"
|
38 |
+
)
|
39 |
+
|
40 |
+
# Header
|
41 |
+
st.title("π Pet Dog Language Understanding")
|
42 |
+
st.markdown("""
|
43 |
+
Upload a video of your dog, and our AI will help interpret their behavior and emotions!
|
44 |
+
""")
|
45 |
+
|
46 |
+
# Initialize interpreter
|
47 |
+
interpreter = DogLanguageInterpreter()
|
48 |
+
|
49 |
+
# File uploader
|
50 |
+
video_file = st.file_uploader("Upload a video of your dog", type=['mp4', 'mov', 'avi'])
|
51 |
+
|
52 |
+
if video_file:
|
53 |
+
# Save video to temporary file
|
54 |
+
tfile = tempfile.NamedTemporaryFile(delete=False)
|
55 |
+
tfile.write(video_file.read())
|
56 |
+
|
57 |
+
# Display video
|
58 |
+
st.video(tfile.name)
|
59 |
+
|
60 |
+
# Analysis button
|
61 |
+
if st.button("Analyze Dog Behavior"):
|
62 |
+
with st.spinner("Analyzing your dog's behavior..."):
|
63 |
+
# Simulate processing time
|
64 |
+
time.sleep(2)
|
65 |
+
|
66 |
+
# Get analysis results
|
67 |
+
results = interpreter.analyze_video(tfile.name)
|
68 |
+
|
69 |
+
# Display results in columns
|
70 |
+
col1, col2 = st.columns(2)
|
71 |
+
|
72 |
+
with col1:
|
73 |
+
st.subheader("Primary Emotion")
|
74 |
+
st.info(results['primary_emotion'])
|
75 |
+
st.metric("Confidence", f"{results['confidence']*100:.1f}%")
|
76 |
+
|
77 |
+
with col2:
|
78 |
+
st.subheader("Actions Detected")
|
79 |
+
for action in results['actions_detected']:
|
80 |
+
st.success(action.replace('_', ' ').title())
|
81 |
+
|
82 |
+
# Recommendations
|
83 |
+
st.subheader("Recommendations")
|
84 |
+
for rec in results['recommendations']:
|
85 |
+
st.write("β’ " + rec)
|
86 |
+
|
87 |
+
# Additional information
|
88 |
+
with st.expander("About Dog Body Language"):
|
89 |
+
st.markdown("""
|
90 |
+
### Common Dog Behaviors and Their Meanings:
|
91 |
+
- **Tail Wagging**: Usually indicates happiness, but the position matters
|
92 |
+
- **Ears Position**: Can show alertness, submission, or aggression
|
93 |
+
- **Body Posture**: Reveals confidence or anxiety levels
|
94 |
+
- **Facial Expressions**: Can indicate stress, happiness, or attention
|
95 |
+
|
96 |
+
Remember that each dog is unique and may express emotions differently!
|
97 |
+
""")
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
main()
|