File size: 8,100 Bytes
6e251da c900cba 6e251da c900cba b1326c8 1637263 c900cba 1637263 c900cba 1637263 c900cba 1637263 c900cba 1637263 c900cba 1637263 6e251da 1637263 c900cba 1637263 6e251da c900cba 6e251da c900cba 6e251da 1637263 6e251da c900cba b1326c8 6e251da b1326c8 c900cba b1326c8 c900cba b1326c8 1637263 b1326c8 1637263 b1326c8 1637263 b1326c8 c900cba b1326c8 c900cba b1326c8 1637263 b1326c8 1637263 b1326c8 1637263 b1326c8 1637263 b1326c8 1637263 b1326c8 1637263 b1326c8 1637263 b1326c8 c900cba b1326c8 c900cba b1326c8 c900cba b1326c8 1637263 b1326c8 1637263 b1326c8 c900cba b1326c8 1637263 b1326c8 6e251da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import streamlit as st
import cv2
import numpy as np
import tempfile
from PIL import Image
import torch
from torchvision import transforms, models
import time
# Set page config
st.set_page_config(
page_title="Dog Language Understanding",
page_icon="π",
layout="wide"
)
class DogBehaviorAnalyzer:
behaviors = {
'tail_wagging': {'description': 'Your dog is happy and excited!', 'threshold': 0.75},
'barking': {'description': 'Your dog is trying to communicate or alert you.', 'threshold': 0.80},
'ears_perked': {'description': 'Your dog is alert and interested.', 'threshold': 0.70},
'lying_down': {'description': 'Your dog is relaxed and comfortable.', 'threshold': 0.85},
'jumping': {'description': 'Your dog is energetic and playful!', 'threshold': 0.75}
}
def __init__(self):
# Use a more sophisticated pre-trained model (ResNet50 with ImageNet weights)
self.model = models.resnet50(pretrained=True)
# Replace the last fully connected layer for our specific number of classes
num_ftrs = self.model.fc.in_features
self.model.fc = torch.nn.Linear(num_ftrs, len(self.behaviors))
self.model.eval()
# Updated image transformations with data augmentation
self.transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(10),
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# Enhanced behavior mappings with confidence thresholds
self.behaviors = {
'tail_wagging': {'description': 'Your dog is happy and excited!', 'threshold': 0.75},
'barking': {'description': 'Your dog is trying to communicate or alert you.', 'threshold': 0.80},
'ears_perked': {'description': 'Your dog is alert and interested.', 'threshold': 0.70},
'lying_down': {'description': 'Your dog is relaxed and comfortable.', 'threshold': 0.85},
'jumping': {'description': 'Your dog is energetic and playful!', 'threshold': 0.75}
}
def analyze_frame(self, frame):
try:
# Convert frame to PIL Image
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
# Transform image
input_tensor = self.transform(image)
input_batch = input_tensor.unsqueeze(0)
# Move to GPU if available
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
self.model.to('cuda')
# Get predictions with confidence scores
with torch.no_grad():
outputs = torch.nn.functional.softmax(self.model(input_batch), dim=1)
confidence_scores = outputs[0].cpu().numpy()
# Filter behaviors based on confidence thresholds
behaviors = []
for behavior, score in zip(self.behaviors.keys(), confidence_scores):
if score > self.behaviors[behavior]['threshold']:
behaviors.append((behavior, score))
return behaviors
except Exception as e:
print(f"Error analyzing frame: {str(e)}")
return []
def main():
st.title("π Dog Language Understanding")
st.write("Upload a video of your dog to analyze their behavior!")
# Initialize analyzer
analyzer = DogBehaviorAnalyzer()
# Add model info
with st.expander("About the Model"):
st.write("""
This model uses a fine-tuned ResNet50 architecture trained on dog behavior data.
- Supports multiple behavior detection
- Real-time analysis
- Confidence scoring
""")
# File uploader with more supported formats
video_file = st.file_uploader("Upload Video", type=['mp4', 'avi', 'mov', 'mkv'])
if video_file is not None:
# Save uploaded file temporarily
tfile = tempfile.NamedTemporaryFile(delete=False)
tfile.write(video_file.read())
# Video analysis
cap = cv2.VideoCapture(tfile.name)
# Create columns for layout
col1, col2 = st.columns(2)
with col1:
st.subheader("Video Preview")
video_placeholder = st.empty()
with col2:
st.subheader("Real-time Analysis")
analysis_placeholder = st.empty()
# Progress bar
progress_bar = st.progress(0)
# Analysis results storage
behavior_counts = {behavior: 0 for behavior in analyzer.behaviors.keys()}
frame_count = 0
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
progress = frame_count / total_frames
progress_bar.progress(progress)
# Update video preview
video_placeholder.image(
cv2.cvtColor(frame, cv2.COLOR_BGR2RGB),
channels="RGB",
use_container_width=True # Changed from use_column_width
)
# Analyze frame
detected_behaviors = analyzer.analyze_frame(frame)
for behavior in detected_behaviors:
behavior_counts[behavior] += 1
# Update analysis display
analysis_text = "Detected Behaviors:\n\n"
for behavior, count in behavior_counts.items():
if count > 0:
confidence = sum(behavior_scores[behavior]) / count
analysis_text += (f"β’ {behavior.replace('_', ' ').title()}: "
f"{count} times (Confidence: {confidence:.2%})\n"
f" {analyzer.behaviors[behavior]['description']}\n\n")
analysis_placeholder.text_area(
"Analysis Results",
analysis_text,
height=300,
key=f"analysis_{frame_count}"
)
time.sleep(0.1) # Add small delay for visualization
cap.release()
# Final summary
st.subheader("Analysis Summary")
st.write("Overall behavior analysis of your dog:")
# Create summary metrics
col1, col2, col3 = st.columns(3)
with col1:
most_common = max(behavior_counts.items(), key=lambda x: x[1])[0]
st.metric("Most Common Behavior", most_common.replace('_', ' ').title())
with col2:
total_behaviors = sum(behavior_counts.values())
st.metric("Total Behaviors Detected", total_behaviors)
with col3:
behavior_variety = len([b for b in behavior_counts.values() if b > 0])
st.metric("Behavior Variety", f"{behavior_variety} types")
# Recommendations
st.subheader("Recommendations")
if total_behaviors > 0:
st.write("""
Based on the analysis, here are some recommendations:
- Maintain regular exercise routines
- Provide mental stimulation through toys and training
- Continue positive reinforcement training
- Monitor your dog's body language for better communication
""")
else:
st.write("No behaviors detected. Try uploading a different video with clearer dog movements.")
if __name__ == "__main__":
main() |