File size: 10,127 Bytes
6e251da c900cba 6e251da 55cad48 6e251da c900cba b1326c8 79ab49c c900cba 79ab49c c900cba 55cad48 c900cba 55cad48 6e251da c900cba 79ab49c 6e251da 55cad48 c900cba 55cad48 6e251da c900cba 6e251da 79ab49c 6e251da c900cba b1326c8 6e251da b1326c8 1803e28 b1326c8 1803e28 b1326c8 1803e28 b1326c8 79ab49c b1326c8 55cad48 1803e28 55cad48 b1326c8 55cad48 79ab49c b1326c8 79ab49c b1326c8 79ab49c b1326c8 79ab49c b1326c8 817fb02 79ab49c b1326c8 55cad48 79ab49c 55cad48 b1326c8 55cad48 79ab49c 55cad48 79ab49c b1326c8 79ab49c 55cad48 79ab49c 55cad48 c900cba 55cad48 79ab49c 55cad48 b1326c8 79ab49c b1326c8 79ab49c b1326c8 79ab49c b1326c8 79ab49c b1326c8 79ab49c 55cad48 b1326c8 55cad48 79ab49c b1326c8 6e251da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import streamlit as st
import cv2
import numpy as np
import tempfile
from PIL import Image
import torch
from torchvision import transforms, models
import time
import plotly.graph_objects as go
from PIL import Image, ImageDraw
import base64
from io import BytesIO
import pandas as pd
# Set page config
st.set_page_config(
page_title="Dog Language Understanding",
page_icon="π",
layout="wide"
)
class DogBehaviorAnalyzer:
def __init__(self):
# Initialize model (using pretrained ResNet for this example)
self.model = models.resnet50(pretrained=True)
self.model.eval()
# Define image transformations
self.transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# Enhanced behavior mappings with emotions and tips
self.behaviors = {
'tail_wagging': {
'emotion': 'Happy and excited',
'description': 'Your dog is expressing joy and enthusiasm!',
'tips': [
'This is a great time for positive reinforcement training',
'Consider engaging in play or exercise',
'Use this excitement for teaching new tricks'
]
},
'barking': {
'emotion': 'Alert or communicative',
'description': 'Your dog is trying to communicate or alert you.',
'tips': [
'Check what triggered the barking',
'Use positive reinforcement for quiet behavior',
'Consider training "quiet" and "speak" commands'
]
},
'ears_perked': {
'emotion': 'Alert and interested',
'description': 'Your dog is focused and attentive.',
'tips': [
'Great moment for training exercises',
'Consider mental stimulation activities',
'Use this attention for bonding exercises'
]
},
'lying_down': {
'emotion': 'Relaxed and comfortable',
'description': 'Your dog is calm and at ease.',
'tips': [
'Perfect time for gentle petting',
'Maintain a peaceful environment',
'Consider quiet bonding activities'
]
},
'jumping': {
'emotion': 'Excited and playful',
'description': 'Your dog is energetic and seeking interaction!',
'tips': [
'Channel energy into structured play',
'Practice "four paws on floor" training',
'Consider agility exercises'
]
}
}
def analyze_frame(self, frame):
# Convert frame to PIL Image
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
# Transform image
input_tensor = self.transform(image)
input_batch = input_tensor.unsqueeze(0)
# Simulate behavior detection
# In a real implementation, you'd use a properly trained model
behaviors = []
confidence_scores = np.random.random(len(self.behaviors))
for behavior, score in zip(self.behaviors.keys(), confidence_scores):
if score > 0.7: # Threshold for detection
behaviors.append(behavior)
return behaviors
def create_animation(self, behavior):
"""Create simple animations for behaviors"""
# Create a simple animation frame
img = Image.new('RGB', (200, 200), 'white')
draw = ImageDraw.Draw(img)
if behavior == 'tail_wagging':
# Draw a simple tail wagging animation
draw.arc([50, 50, 150, 150], 0, 180, fill='black', width=2)
elif behavior == 'barking':
# Draw speech-bubble like shapes
draw.ellipse([50, 50, 150, 150], outline='black', width=2)
# Convert to base64 for display
buffered = BytesIO()
img.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode()
def main():
st.title("π Dog Language Understanding")
st.write("Upload a video of your dog to analyze their behavior and emotions!")
# Initialize analyzer
analyzer = DogBehaviorAnalyzer()
# File uploader
video_file = st.file_uploader("Upload Video", type=['mp4', 'avi', 'mov'])
if video_file is not None:
# Save uploaded file temporarily
tfile = tempfile.NamedTemporaryFile(delete=False)
tfile.write(video_file.read())
# Video analysis
cap = cv2.VideoCapture(tfile.name)
# Create columns for layout
col1, col2 = st.columns(2)
with col1:
st.subheader("Video Preview")
video_placeholder = st.empty()
with col2:
st.subheader("Real-time Analysis")
analysis_placeholder = st.empty()
emotion_placeholder = st.empty()
# Progress bar
progress_bar = st.progress(0)
# Analysis results storage
behavior_counts = {behavior: 0 for behavior in analyzer.behaviors.keys()}
current_emotions = set()
frame_count = 0
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
progress = frame_count / total_frames
progress_bar.progress(progress)
# Update video preview
video_placeholder.image(
cv2.cvtColor(frame, cv2.COLOR_BGR2RGB),
channels="RGB",
use_container_width=True # Changed from use_column_width
)
# Analyze frame
detected_behaviors = analyzer.analyze_frame(frame)
for behavior in detected_behaviors:
behavior_counts[behavior] += 1
current_emotions.add(behavior)
# Update analysis display with enhanced information
analysis_text = "Detected Behaviors & Emotions:\n\n"
for behavior, count in behavior_counts.items():
if count > 0:
behavior_info = analyzer.behaviors[behavior]
analysis_text += f"β’ {behavior.replace('_', ' ').title()}: {count} times\n"
analysis_text += f" Emotion: {behavior_info['emotion']}\n"
analysis_text += f" {behavior_info['description']}\n\n"
# Add animation for the behavior
animation_data = analyzer.create_animation(behavior)
st.image(f"data:image/png;base64,{animation_data}",
width=100,
caption=f"{behavior.replace('_', ' ').title()} Animation")
analysis_placeholder.text_area(
"Analysis Results",
analysis_text,
height=300
)
# Display training tips
if len(current_emotions) > 0:
st.subheader("Training Tips")
for behavior in current_emotions:
tips = analyzer.behaviors[behavior]['tips']
for tip in tips:
st.info(tip)
time.sleep(0.1)
cap.release()
# Final summary with enhanced visualizations
st.subheader("Analysis Summary")
# Create emotion timeline
emotions_df = pd.DataFrame(list(current_emotions), columns=['Emotion'])
fig = go.Figure(data=[go.Scatter(x=emotions_df.index,
y=emotions_df['Emotion'],
mode='lines+markers')])
fig.update_layout(title='Emotional Journey',
xaxis_title='Time',
yaxis_title='Emotion')
st.plotly_chart(fig)
# Final summary
st.subheader("Analysis Summary")
st.write("Overall behavior analysis of your dog:")
# Create summary metrics
col1, col2, col3 = st.columns(3)
with col1:
most_common = max(behavior_counts.items(), key=lambda x: x[1])[0]
st.metric("Most Common Behavior", most_common.replace('_', ' ').title())
with col2:
total_behaviors = sum(behavior_counts.values())
st.metric("Total Behaviors Detected", total_behaviors)
with col3:
behavior_variety = len([b for b in behavior_counts.values() if b > 0])
st.metric("Behavior Variety", f"{behavior_variety} types")
# Enhanced recommendations
st.subheader("Personalized Recommendations")
if total_behaviors > 0:
dominant_behavior = max(behavior_counts.items(), key=lambda x: x[1])[0]
st.write(f"""
Based on the analysis, here are personalized recommendations for {dominant_behavior}:
{' '.join(analyzer.behaviors[dominant_behavior]['tips'])}
General recommendations:
- Maintain regular exercise routines
- Provide mental stimulation through toys and training
- Continue positive reinforcement training
- Monitor your dog's body language for better communication
""")
else:
st.write("No behaviors detected. Try uploading a different video with clearer dog movements.")
if __name__ == "__main__":
main() |