Spaces:
Runtime error
Runtime error
import hashlib | |
from enum import Enum, unique | |
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union | |
from ..extras.logging import get_logger | |
if TYPE_CHECKING: | |
from datasets import Dataset, IterableDataset | |
from transformers import TrainingArguments | |
from llmtuner.hparams import DataArguments | |
logger = get_logger(__name__) | |
class Role(str, Enum): | |
USER = "user" | |
ASSISTANT = "assistant" | |
OBSERVATION = "observation" | |
FUNCTION = "function" | |
def checksum(data_files: List[str], file_sha1: Optional[str] = None) -> None: | |
if file_sha1 is None: | |
logger.warning("Checksum failed: missing SHA-1 hash value in dataset_info.json.") | |
return | |
if len(data_files) != 1: | |
logger.warning("Checksum failed: too many files.") | |
return | |
with open(data_files[0], "rb") as f: | |
sha1 = hashlib.sha1(f.read()).hexdigest() | |
if sha1 != file_sha1: | |
logger.warning("Checksum failed: mismatched SHA-1 hash value at {}.".format(data_files[0])) | |
def infer_max_len(source_len: int, target_len: int, max_len: int, reserved_label_len: int) -> Tuple[int, int]: | |
max_target_len = int(max_len * (target_len / (source_len + target_len))) | |
max_target_len = max(max_target_len, reserved_label_len) | |
max_source_len = max_len - max_target_len | |
return max_source_len, max_target_len | |
def split_dataset( | |
dataset: Union["Dataset", "IterableDataset"], data_args: "DataArguments", training_args: "TrainingArguments" | |
) -> Dict[str, "Dataset"]: | |
if training_args.do_train: | |
if data_args.val_size > 1e-6: # Split the dataset | |
if data_args.streaming: | |
val_set = dataset.take(int(data_args.val_size)) | |
train_set = dataset.skip(int(data_args.val_size)) | |
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed) | |
return {"train_dataset": train_set, "eval_dataset": val_set} | |
else: | |
val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size | |
dataset = dataset.train_test_split(test_size=val_size, seed=training_args.seed) | |
return {"train_dataset": dataset["train"], "eval_dataset": dataset["test"]} | |
else: | |
if data_args.streaming: | |
dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed) | |
return {"train_dataset": dataset} | |
else: # do_eval or do_predict | |
return {"eval_dataset": dataset} | |