File size: 2,546 Bytes
20076b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import hashlib
from enum import Enum, unique
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union

from ..extras.logging import get_logger


if TYPE_CHECKING:
    from datasets import Dataset, IterableDataset
    from transformers import TrainingArguments

    from llmtuner.hparams import DataArguments


logger = get_logger(__name__)


@unique
class Role(str, Enum):
    USER = "user"
    ASSISTANT = "assistant"
    OBSERVATION = "observation"
    FUNCTION = "function"


def checksum(data_files: List[str], file_sha1: Optional[str] = None) -> None:
    if file_sha1 is None:
        logger.warning("Checksum failed: missing SHA-1 hash value in dataset_info.json.")
        return

    if len(data_files) != 1:
        logger.warning("Checksum failed: too many files.")
        return

    with open(data_files[0], "rb") as f:
        sha1 = hashlib.sha1(f.read()).hexdigest()
        if sha1 != file_sha1:
            logger.warning("Checksum failed: mismatched SHA-1 hash value at {}.".format(data_files[0]))


def infer_max_len(source_len: int, target_len: int, max_len: int, reserved_label_len: int) -> Tuple[int, int]:
    max_target_len = int(max_len * (target_len / (source_len + target_len)))
    max_target_len = max(max_target_len, reserved_label_len)
    max_source_len = max_len - max_target_len
    return max_source_len, max_target_len


def split_dataset(
    dataset: Union["Dataset", "IterableDataset"], data_args: "DataArguments", training_args: "TrainingArguments"
) -> Dict[str, "Dataset"]:
    if training_args.do_train:
        if data_args.val_size > 1e-6:  # Split the dataset
            if data_args.streaming:
                val_set = dataset.take(int(data_args.val_size))
                train_set = dataset.skip(int(data_args.val_size))
                dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
                return {"train_dataset": train_set, "eval_dataset": val_set}
            else:
                val_size = int(data_args.val_size) if data_args.val_size > 1 else data_args.val_size
                dataset = dataset.train_test_split(test_size=val_size, seed=training_args.seed)
                return {"train_dataset": dataset["train"], "eval_dataset": dataset["test"]}
        else:
            if data_args.streaming:
                dataset = dataset.shuffle(buffer_size=data_args.buffer_size, seed=training_args.seed)
            return {"train_dataset": dataset}
    else:  # do_eval or do_predict
        return {"eval_dataset": dataset}