Update app.py
Browse files
app.py
CHANGED
@@ -3,11 +3,31 @@ import gradio as gr
|
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
|
6 |
-
title = """# Minitron-8B-Base"""
|
7 |
description = """
|
|
|
|
|
8 |
Minitron is a family of small language models (SLMs) obtained by pruning [NVIDIA's](https://huggingface.co/nvidia) Nemotron-4 15B model. We prune model embedding size, attention heads, and MLP intermediate dimension, following which, we perform continued training with distillation to arrive at the final models.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
"""
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Load the tokenizer and model
|
12 |
model_path = "nvidia/Minitron-8B-Base"
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
@@ -31,19 +51,39 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
31 |
|
32 |
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
33 |
|
34 |
-
return output_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
demo = gr.ChatInterface(
|
37 |
-
title=gr.Markdown(title),
|
38 |
-
|
39 |
-
fn=
|
40 |
-
additional_inputs=[
|
41 |
-
gr.
|
42 |
-
gr.Slider(minimum=1, maximum=
|
43 |
-
gr.Slider(minimum=0.1, maximum=
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
if __name__ == "__main__":
|
49 |
demo.launch()
|
|
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
|
6 |
+
title = """# Minitron-8B-Base Story Generator"""
|
7 |
description = """
|
8 |
+
# Minitron
|
9 |
+
|
10 |
Minitron is a family of small language models (SLMs) obtained by pruning [NVIDIA's](https://huggingface.co/nvidia) Nemotron-4 15B model. We prune model embedding size, attention heads, and MLP intermediate dimension, following which, we perform continued training with distillation to arrive at the final models.
|
11 |
+
|
12 |
+
# Short Story Generator
|
13 |
+
Welcome to the Short Story Generator! This application helps you create unique short stories based on your inputs.
|
14 |
+
|
15 |
+
**Instructions:**
|
16 |
+
1. **Main Character:** Describe the main character of your story. For example, "a brave knight" or "a curious cat".
|
17 |
+
2. **Setting:** Describe the setting where your story takes place. For example, "in an enchanted forest" or "in a bustling city".
|
18 |
+
3. **Plot Twist:** Add an interesting plot twist to make the story exciting. For example, "discovers a hidden treasure" or "finds a secret portal to another world".
|
19 |
+
|
20 |
+
After filling in these details, click the "Submit" button, and a short story will be generated for you.
|
21 |
"""
|
22 |
|
23 |
+
inputs = [
|
24 |
+
gr.inputs.Textbox(label="Main Character", placeholder="e.g. a brave knight"),
|
25 |
+
gr.inputs.Textbox(label="Setting", placeholder="e.g. in an enchanted forest"),
|
26 |
+
gr.inputs.Textbox(label="Plot Twist", placeholder="e.g. discovers a hidden treasure")
|
27 |
+
]
|
28 |
+
|
29 |
+
outputs = gr.outputs.Textbox(label="Generated Story")
|
30 |
+
|
31 |
# Load the tokenizer and model
|
32 |
model_path = "nvidia/Minitron-8B-Base"
|
33 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
|
|
51 |
|
52 |
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
53 |
|
54 |
+
return output_text
|
55 |
+
|
56 |
+
@spaces.GPU
|
57 |
+
def generate_story(character, setting, plot_twist):
|
58 |
+
"""Define the function to generate the story."""
|
59 |
+
prompt = f"Write a short story with the following details:\nMain character: {character}\nSetting: {setting}\nPlot twist: {plot_twist}\n\nStory:"
|
60 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
|
61 |
+
|
62 |
+
output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1)
|
63 |
+
|
64 |
+
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
65 |
+
|
66 |
+
return output_text
|
67 |
|
68 |
+
#demo = gr.ChatInterface(
|
69 |
+
# title=gr.Markdown(title),
|
70 |
+
# description=gr.Markdown(description),
|
71 |
+
# fn=generate_story,
|
72 |
+
# additional_inputs=[
|
73 |
+
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
74 |
+
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
75 |
+
# gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
76 |
+
# ],
|
77 |
+
#)
|
78 |
+
|
79 |
+
# Create the Gradio interface
|
80 |
+
demo = gr.Interface(
|
81 |
+
fn=generate_story,
|
82 |
+
inputs=inputs,
|
83 |
+
outputs=outputs,
|
84 |
+
title="Short Story Generator",
|
85 |
+
description=description
|
86 |
+
)
|
87 |
|
88 |
if __name__ == "__main__":
|
89 |
demo.launch()
|