gheinrich commited on
Commit
207e0eb
β€’
1 Parent(s): a970429

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -13
app.py CHANGED
@@ -3,11 +3,31 @@ import gradio as gr
3
  import torch
4
  from transformers import AutoTokenizer, AutoModelForCausalLM
5
 
6
- title = """# Minitron-8B-Base"""
7
  description = """
 
 
8
  Minitron is a family of small language models (SLMs) obtained by pruning [NVIDIA's](https://huggingface.co/nvidia) Nemotron-4 15B model. We prune model embedding size, attention heads, and MLP intermediate dimension, following which, we perform continued training with distillation to arrive at the final models.
 
 
 
 
 
 
 
 
 
 
9
  """
10
 
 
 
 
 
 
 
 
 
11
  # Load the tokenizer and model
12
  model_path = "nvidia/Minitron-8B-Base"
13
  tokenizer = AutoTokenizer.from_pretrained(model_path)
@@ -31,19 +51,39 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
31
 
32
  output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
33
 
34
- return output_text
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
- demo = gr.ChatInterface(
37
- title=gr.Markdown(title),
38
- # description=gr.Markdown(description),
39
- fn=respond,
40
- additional_inputs=[
41
- gr.Textbox(value="You are Minitron an AI assistant created by Tonic-AI", label="System message"),
42
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
43
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
44
- gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
45
- ],
46
- )
 
 
 
 
 
 
 
 
47
 
48
  if __name__ == "__main__":
49
  demo.launch()
 
3
  import torch
4
  from transformers import AutoTokenizer, AutoModelForCausalLM
5
 
6
+ title = """# Minitron-8B-Base Story Generator"""
7
  description = """
8
+ # Minitron
9
+
10
  Minitron is a family of small language models (SLMs) obtained by pruning [NVIDIA's](https://huggingface.co/nvidia) Nemotron-4 15B model. We prune model embedding size, attention heads, and MLP intermediate dimension, following which, we perform continued training with distillation to arrive at the final models.
11
+
12
+ # Short Story Generator
13
+ Welcome to the Short Story Generator! This application helps you create unique short stories based on your inputs.
14
+
15
+ **Instructions:**
16
+ 1. **Main Character:** Describe the main character of your story. For example, "a brave knight" or "a curious cat".
17
+ 2. **Setting:** Describe the setting where your story takes place. For example, "in an enchanted forest" or "in a bustling city".
18
+ 3. **Plot Twist:** Add an interesting plot twist to make the story exciting. For example, "discovers a hidden treasure" or "finds a secret portal to another world".
19
+
20
+ After filling in these details, click the "Submit" button, and a short story will be generated for you.
21
  """
22
 
23
+ inputs = [
24
+ gr.inputs.Textbox(label="Main Character", placeholder="e.g. a brave knight"),
25
+ gr.inputs.Textbox(label="Setting", placeholder="e.g. in an enchanted forest"),
26
+ gr.inputs.Textbox(label="Plot Twist", placeholder="e.g. discovers a hidden treasure")
27
+ ]
28
+
29
+ outputs = gr.outputs.Textbox(label="Generated Story")
30
+
31
  # Load the tokenizer and model
32
  model_path = "nvidia/Minitron-8B-Base"
33
  tokenizer = AutoTokenizer.from_pretrained(model_path)
 
51
 
52
  output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
53
 
54
+ return output_text
55
+
56
+ @spaces.GPU
57
+ def generate_story(character, setting, plot_twist):
58
+ """Define the function to generate the story."""
59
+ prompt = f"Write a short story with the following details:\nMain character: {character}\nSetting: {setting}\nPlot twist: {plot_twist}\n\nStory:"
60
+ input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
61
+
62
+ output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1)
63
+
64
+ output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
65
+
66
+ return output_text
67
 
68
+ #demo = gr.ChatInterface(
69
+ # title=gr.Markdown(title),
70
+ # description=gr.Markdown(description),
71
+ # fn=generate_story,
72
+ # additional_inputs=[
73
+ # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
74
+ # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
75
+ # gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
76
+ # ],
77
+ #)
78
+
79
+ # Create the Gradio interface
80
+ demo = gr.Interface(
81
+ fn=generate_story,
82
+ inputs=inputs,
83
+ outputs=outputs,
84
+ title="Short Story Generator",
85
+ description=description
86
+ )
87
 
88
  if __name__ == "__main__":
89
  demo.launch()