gheinrich commited on
Commit
a970429
β€’
1 Parent(s): 00240b2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -54
app.py CHANGED
@@ -1,63 +1,49 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
 
 
 
6
  """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
27
 
28
- response = ""
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
 
45
  demo = gr.ChatInterface(
46
- respond,
 
 
47
  additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
+ import spaces
2
+ import gradio as gr
3
+ import torch
4
+ from transformers import AutoTokenizer, AutoModelForCausalLM
5
+
6
+ title = """# Minitron-8B-Base"""
7
+ description = """
8
+ Minitron is a family of small language models (SLMs) obtained by pruning [NVIDIA's](https://huggingface.co/nvidia) Nemotron-4 15B model. We prune model embedding size, attention heads, and MLP intermediate dimension, following which, we perform continued training with distillation to arrive at the final models.
9
  """
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
+ # Load the tokenizer and model
12
+ model_path = "nvidia/Minitron-8B-Base"
13
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
 
 
14
 
15
+ device='cuda'
16
+ dtype=torch.bfloat16
17
+ model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device)
18
 
19
+ # Define the prompt format
20
+ def create_prompt(instruction):
21
+ PROMPT = '''Below is an instruction that describes a task.\n\nWrite a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:'''
22
+ return PROMPT.format(instruction=instruction)
23
 
24
+ @spaces.GPU
25
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
26
+ prompt = create_prompt(message)
27
+
28
+ input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.device)
 
 
 
29
 
30
+ output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1)
 
31
 
32
+ output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
33
+
34
+ return output_text
35
+
36
  demo = gr.ChatInterface(
37
+ title=gr.Markdown(title),
38
+ # description=gr.Markdown(description),
39
+ fn=respond,
40
  additional_inputs=[
41
+ gr.Textbox(value="You are Minitron an AI assistant created by Tonic-AI", label="System message"),
42
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
43
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
44
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
45
+ ],
46
+ )
47
+
48
+ if __name__ == "__main__":
49
+ demo.launch()