|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import os |
|
import random |
|
import torch |
|
import torch.utils.data |
|
import numpy as np |
|
from librosa.util import normalize |
|
from scipy.io.wavfile import read |
|
from librosa.filters import mel as librosa_mel_fn |
|
import pathlib |
|
from tqdm import tqdm |
|
|
|
MAX_WAV_VALUE = 32767.0 |
|
|
|
|
|
def load_wav(full_path, sr_target): |
|
sampling_rate, data = read(full_path) |
|
if sampling_rate != sr_target: |
|
raise RuntimeError("Sampling rate of the file {} is {} Hz, but the model requires {} Hz". |
|
format(full_path, sampling_rate, sr_target)) |
|
return data, sampling_rate |
|
|
|
|
|
def dynamic_range_compression(x, C=1, clip_val=1e-5): |
|
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C) |
|
|
|
|
|
def dynamic_range_decompression(x, C=1): |
|
return np.exp(x) / C |
|
|
|
|
|
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): |
|
return torch.log(torch.clamp(x, min=clip_val) * C) |
|
|
|
|
|
def dynamic_range_decompression_torch(x, C=1): |
|
return torch.exp(x) / C |
|
|
|
|
|
def spectral_normalize_torch(magnitudes): |
|
output = dynamic_range_compression_torch(magnitudes) |
|
return output |
|
|
|
|
|
def spectral_de_normalize_torch(magnitudes): |
|
output = dynamic_range_decompression_torch(magnitudes) |
|
return output |
|
|
|
|
|
mel_basis = {} |
|
hann_window = {} |
|
|
|
|
|
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): |
|
if torch.min(y) < -1.: |
|
print('min value is ', torch.min(y)) |
|
if torch.max(y) > 1.: |
|
print('max value is ', torch.max(y)) |
|
|
|
global mel_basis, hann_window |
|
if fmax not in mel_basis: |
|
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax) |
|
str_key_mel_basis = str(fmax)+'_'+str(y.device) |
|
mel_basis[str_key_mel_basis] = torch.from_numpy(mel).float().to(y.device) |
|
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device) |
|
|
|
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') |
|
y = y.squeeze(1) |
|
|
|
|
|
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)], |
|
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True) |
|
spec = torch.view_as_real(spec) |
|
spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9)) |
|
|
|
spec = torch.matmul(mel_basis[str_key_mel_basis], spec) |
|
spec = spectral_normalize_torch(spec) |
|
|
|
return spec |
|
|
|
|
|
def get_dataset_filelist(a): |
|
with open(a.input_training_file, 'r', encoding='utf-8') as fi: |
|
training_files = [os.path.join(a.input_wavs_dir, x.split('|')[0] + '.wav') |
|
for x in fi.read().split('\n') if len(x) > 0] |
|
print("first training file: {}".format(training_files[0])) |
|
|
|
with open(a.input_validation_file, 'r', encoding='utf-8') as fi: |
|
validation_files = [os.path.join(a.input_wavs_dir, x.split('|')[0] + '.wav') |
|
for x in fi.read().split('\n') if len(x) > 0] |
|
print("first validation file: {}".format(validation_files[0])) |
|
|
|
list_unseen_validation_files = [] |
|
for i in range(len(a.list_input_unseen_validation_file)): |
|
with open(a.list_input_unseen_validation_file[i], 'r', encoding='utf-8') as fi: |
|
unseen_validation_files = [os.path.join(a.list_input_unseen_wavs_dir[i], x.split('|')[0] + '.wav') |
|
for x in fi.read().split('\n') if len(x) > 0] |
|
print("first unseen {}th validation fileset: {}".format(i, unseen_validation_files[0])) |
|
list_unseen_validation_files.append(unseen_validation_files) |
|
|
|
return training_files, validation_files, list_unseen_validation_files |
|
|
|
|
|
class MelDataset(torch.utils.data.Dataset): |
|
def __init__(self, training_files, hparams, segment_size, n_fft, num_mels, |
|
hop_size, win_size, sampling_rate, fmin, fmax, split=True, shuffle=True, n_cache_reuse=1, |
|
device=None, fmax_loss=None, fine_tuning=False, base_mels_path=None, is_seen=True): |
|
self.audio_files = training_files |
|
random.seed(1234) |
|
if shuffle: |
|
random.shuffle(self.audio_files) |
|
self.hparams = hparams |
|
self.is_seen = is_seen |
|
if self.is_seen: |
|
self.name = pathlib.Path(self.audio_files[0]).parts[0] |
|
else: |
|
self.name = '-'.join(pathlib.Path(self.audio_files[0]).parts[:2]).strip("/") |
|
|
|
self.segment_size = segment_size |
|
self.sampling_rate = sampling_rate |
|
self.split = split |
|
self.n_fft = n_fft |
|
self.num_mels = num_mels |
|
self.hop_size = hop_size |
|
self.win_size = win_size |
|
self.fmin = fmin |
|
self.fmax = fmax |
|
self.fmax_loss = fmax_loss |
|
self.cached_wav = None |
|
self.n_cache_reuse = n_cache_reuse |
|
self._cache_ref_count = 0 |
|
self.device = device |
|
self.fine_tuning = fine_tuning |
|
self.base_mels_path = base_mels_path |
|
|
|
print("INFO: checking dataset integrity...") |
|
for i in tqdm(range(len(self.audio_files))): |
|
assert os.path.exists(self.audio_files[i]), "{} not found".format(self.audio_files[i]) |
|
|
|
def __getitem__(self, index): |
|
|
|
filename = self.audio_files[index] |
|
if self._cache_ref_count == 0: |
|
audio, sampling_rate = load_wav(filename, self.sampling_rate) |
|
audio = audio / MAX_WAV_VALUE |
|
if not self.fine_tuning: |
|
audio = normalize(audio) * 0.95 |
|
self.cached_wav = audio |
|
if sampling_rate != self.sampling_rate: |
|
raise ValueError("{} SR doesn't match target {} SR".format( |
|
sampling_rate, self.sampling_rate)) |
|
self._cache_ref_count = self.n_cache_reuse |
|
else: |
|
audio = self.cached_wav |
|
self._cache_ref_count -= 1 |
|
|
|
audio = torch.FloatTensor(audio) |
|
audio = audio.unsqueeze(0) |
|
|
|
if not self.fine_tuning: |
|
if self.split: |
|
if audio.size(1) >= self.segment_size: |
|
max_audio_start = audio.size(1) - self.segment_size |
|
audio_start = random.randint(0, max_audio_start) |
|
audio = audio[:, audio_start:audio_start+self.segment_size] |
|
else: |
|
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant') |
|
|
|
mel = mel_spectrogram(audio, self.n_fft, self.num_mels, |
|
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax, |
|
center=False) |
|
else: |
|
|
|
if (audio.size(1) % self.hop_size) != 0: |
|
audio = audio[:, :-(audio.size(1) % self.hop_size)] |
|
mel = mel_spectrogram(audio, self.n_fft, self.num_mels, |
|
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax, |
|
center=False) |
|
assert audio.shape[1] == mel.shape[2] * self.hop_size, "audio shape {} mel shape {}".format(audio.shape, mel.shape) |
|
|
|
else: |
|
mel = np.load( |
|
os.path.join(self.base_mels_path, os.path.splitext(os.path.split(filename)[-1])[0] + '.npy')) |
|
mel = torch.from_numpy(mel) |
|
|
|
if len(mel.shape) < 3: |
|
mel = mel.unsqueeze(0) |
|
|
|
if self.split: |
|
frames_per_seg = math.ceil(self.segment_size / self.hop_size) |
|
|
|
if audio.size(1) >= self.segment_size: |
|
mel_start = random.randint(0, mel.size(2) - frames_per_seg - 1) |
|
mel = mel[:, :, mel_start:mel_start + frames_per_seg] |
|
audio = audio[:, mel_start * self.hop_size:(mel_start + frames_per_seg) * self.hop_size] |
|
else: |
|
mel = torch.nn.functional.pad(mel, (0, frames_per_seg - mel.size(2)), 'constant') |
|
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant') |
|
|
|
mel_loss = mel_spectrogram(audio, self.n_fft, self.num_mels, |
|
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax_loss, |
|
center=False) |
|
|
|
return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze()) |
|
|
|
def __len__(self): |
|
return len(self.audio_files) |
|
|