init
Browse files- .gitattributes +1 -1
- .gitignore +6 -0
- LICENSE +21 -0
- README.md +4 -5
- README_model.md +169 -0
- activations.py +120 -0
- alias_free_cuda/__init__.py +0 -0
- alias_free_cuda/activation1d.py +63 -0
- alias_free_cuda/anti_alias_activation.cpp +48 -0
- alias_free_cuda/anti_alias_activation_cuda.cu +314 -0
- alias_free_cuda/compat.h +31 -0
- alias_free_cuda/load.py +72 -0
- alias_free_cuda/test_activation.py +55 -0
- alias_free_cuda/test_activation_snake_beta.py +55 -0
- alias_free_cuda/type_shim.h +97 -0
- alias_free_torch/__init__.py +6 -0
- alias_free_torch/act.py +28 -0
- alias_free_torch/filter.py +95 -0
- alias_free_torch/resample.py +49 -0
- app.py +461 -0
- env.py +18 -0
- examples/dance_24k.wav +3 -0
- examples/hifitts_44k.wav +3 -0
- examples/jensen_24k.wav +3 -0
- examples/libritts_24k.wav +3 -0
- examples/megalovania_24k.wav +3 -0
- examples/musdbhq_44k.wav +3 -0
- examples/musiccaps1_44k.wav +3 -0
- examples/musiccaps2_44k.wav +3 -0
- examples/queen_24k.wav +3 -0
- incl_licenses/LICENSE_1 +21 -0
- incl_licenses/LICENSE_2 +21 -0
- incl_licenses/LICENSE_3 +201 -0
- incl_licenses/LICENSE_4 +29 -0
- incl_licenses/LICENSE_5 +16 -0
- incl_licenses/LICENSE_6 +21 -0
- incl_licenses/LICENSE_7 +21 -0
- incl_licenses/LICENSE_8 +21 -0
- inference.py +105 -0
- meldataset.py +213 -0
- models.py +955 -0
- requirements.txt +13 -0
- utils.py +80 -0
.gitattributes
CHANGED
@@ -25,7 +25,6 @@
|
|
25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
@@ -33,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
|
|
28 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.wav filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.pyc
|
2 |
+
__pycache__/
|
3 |
+
*/__pycache__/
|
4 |
+
alias_free_cuda/build/
|
5 |
+
exp/
|
6 |
+
tmp/
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 NVIDIA CORPORATION.
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,13 +1,12 @@
|
|
1 |
---
|
2 |
title: BigVGAN
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.38.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: BigVGAN
|
3 |
+
emoji: 🔊
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.38.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
README_model.md
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## BigVGAN: A Universal Neural Vocoder with Large-Scale Training
|
2 |
+
#### Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, Sungroh Yoon
|
3 |
+
|
4 |
+
<center><img src="https://user-images.githubusercontent.com/15963413/218609148-881e39df-33af-4af9-ab95-1427c4ebf062.png" width="800"></center>
|
5 |
+
|
6 |
+
|
7 |
+
### [Paper](https://arxiv.org/abs/2206.04658)   [Project page](https://research.nvidia.com/labs/adlr/projects/bigvgan/)   [Audio demo](https://bigvgan-demo.github.io/)
|
8 |
+
|
9 |
+
## News
|
10 |
+
[Jul 2024] We release BigVGAN-v2 along with pretrained checkpoints. Below are the highlights:
|
11 |
+
* Custom CUDA kernel for inference: we provide a fused upsampling + activation kernel written in CUDA for accelerated inference speed. Our test shows 1.5 - 3x faster speed on a single A100 GPU.
|
12 |
+
* Improved discriminator and loss: BigVGAN-v2 is trained using a [multi-scale sub-band CQT discriminator](https://arxiv.org/abs/2311.14957) and a [multi-scale mel spectrogram loss](https://arxiv.org/abs/2306.06546).
|
13 |
+
* Larger training data: BigVGAN-v2 is trained using datasets containing diverse audio types, including speech in multiple languages, environmental sounds, and instruments.
|
14 |
+
* We provide pretrained checkpoints of BigVGAN-v2 using diverse audio configurations, supporting up to 44 kHz sampling rate and 512x upsampling ratio.
|
15 |
+
|
16 |
+
## Installation
|
17 |
+
The codebase has been tested on Python `3.10` and PyTorch `2.3.1` conda packages with either `pytorch-cuda=12.1` or `pytorch-cuda=11.8`. Below is an example command to create the conda environment:
|
18 |
+
```shell
|
19 |
+
conda create -n bigvgan python=3.10 pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
|
20 |
+
conda activate bigvgan
|
21 |
+
```
|
22 |
+
|
23 |
+
Clone the repository and install dependencies:
|
24 |
+
```shell
|
25 |
+
git clone https://github.com/NVIDIA/BigVGAN
|
26 |
+
cd BigVGAN
|
27 |
+
pip install -r requirements.txt
|
28 |
+
```
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
Create symbolic link to the root of the dataset. The codebase uses filelist with the relative path from the dataset. Below are the example commands for LibriTTS dataset:
|
33 |
+
``` shell
|
34 |
+
cd LibriTTS && \
|
35 |
+
ln -s /path/to/your/LibriTTS/train-clean-100 train-clean-100 && \
|
36 |
+
ln -s /path/to/your/LibriTTS/train-clean-360 train-clean-360 && \
|
37 |
+
ln -s /path/to/your/LibriTTS/train-other-500 train-other-500 && \
|
38 |
+
ln -s /path/to/your/LibriTTS/dev-clean dev-clean && \
|
39 |
+
ln -s /path/to/your/LibriTTS/dev-other dev-other && \
|
40 |
+
ln -s /path/to/your/LibriTTS/test-clean test-clean && \
|
41 |
+
ln -s /path/to/your/LibriTTS/test-other test-other && \
|
42 |
+
cd ..
|
43 |
+
```
|
44 |
+
|
45 |
+
## Training
|
46 |
+
Train BigVGAN model. Below is an example command for training BigVGAN-v2 using LibriTTS dataset at 24kHz with a full 100-band mel spectrogram as input:
|
47 |
+
```shell
|
48 |
+
python train.py \
|
49 |
+
--config configs/bigvgan_v2_24khz_100band_256x.json \
|
50 |
+
--input_wavs_dir LibriTTS \
|
51 |
+
--input_training_file LibriTTS/train-full.txt \
|
52 |
+
--input_validation_file LibriTTS/val-full.txt \
|
53 |
+
--list_input_unseen_wavs_dir LibriTTS LibriTTS \
|
54 |
+
--list_input_unseen_validation_file LibriTTS/dev-clean.txt LibriTTS/dev-other.txt \
|
55 |
+
--checkpoint_path exp/bigvgan_v2_24khz_100band_256x
|
56 |
+
```
|
57 |
+
|
58 |
+
|
59 |
+
## Synthesis
|
60 |
+
Synthesize from BigVGAN model. Below is an example command for generating audio from the model.
|
61 |
+
It computes mel spectrograms using wav files from `--input_wavs_dir` and saves the generated audio to `--output_dir`.
|
62 |
+
```shell
|
63 |
+
python inference.py \
|
64 |
+
--checkpoint_file exp/bigvgan_v2_24khz_100band_256x/g_03000000 \
|
65 |
+
--input_wavs_dir /path/to/your/input_wav \
|
66 |
+
--output_dir /path/to/your/output_wav
|
67 |
+
```
|
68 |
+
|
69 |
+
`inference_e2e.py` supports synthesis directly from the mel spectrogram saved in `.npy` format, with shapes `[1, channel, frame]` or `[channel, frame]`.
|
70 |
+
It loads mel spectrograms from `--input_mels_dir` and saves the generated audio to `--output_dir`.
|
71 |
+
|
72 |
+
Make sure that the STFT hyperparameters for mel spectrogram are the same as the model, which are defined in `config.json` of the corresponding model.
|
73 |
+
```shell
|
74 |
+
python inference_e2e.py \
|
75 |
+
--checkpoint_file exp/bigvgan_v2_24khz_100band_256x/g_03000000 \
|
76 |
+
--input_mels_dir /path/to/your/input_mel \
|
77 |
+
--output_dir /path/to/your/output_wav
|
78 |
+
```
|
79 |
+
|
80 |
+
## Using Custom CUDA Kernel for Synthesis
|
81 |
+
You can apply the fast CUDA inference kernel by using a parameter `use_cuda_kernel` when instantiating BigVGAN:
|
82 |
+
|
83 |
+
```python
|
84 |
+
generator = BigVGAN(h, use_cuda_kernel=True)
|
85 |
+
```
|
86 |
+
|
87 |
+
You can also pass `--use_cuda_kernel` to `inference.py` and `inference_e2e.py` to enable this feature.
|
88 |
+
|
89 |
+
When applied for the first time, it builds the kernel using `nvcc` and `ninja`. If the build succeeds, the kernel is saved to `alias_free_cuda/build` and the model automatically loads the kernel. The codebase has been tested using CUDA `12.1`.
|
90 |
+
|
91 |
+
Please make sure that both are installed in your system and `nvcc` installed in your system matches the version your PyTorch build is using.
|
92 |
+
|
93 |
+
We recommend running `test_cuda_vs_torch_model.py` first to build and check the correctness of the CUDA kernel. See below example command and its output, where it returns `[Success] test CUDA fused vs. plain torch BigVGAN inference`:
|
94 |
+
|
95 |
+
```python
|
96 |
+
python test_cuda_vs_torch_model.py \
|
97 |
+
--checkpoint_file /path/to/your/bigvgan/g_03000000
|
98 |
+
```
|
99 |
+
|
100 |
+
```shell
|
101 |
+
loading plain Pytorch BigVGAN
|
102 |
+
...
|
103 |
+
loading CUDA kernel BigVGAN with auto-build
|
104 |
+
Detected CUDA files, patching ldflags
|
105 |
+
Emitting ninja build file /path/to/your/BigVGAN/alias_free_cuda/build/build.ninja...
|
106 |
+
Building extension module anti_alias_activation_cuda...
|
107 |
+
...
|
108 |
+
Loading extension module anti_alias_activation_cuda...
|
109 |
+
...
|
110 |
+
Loading '/path/to/your/bigvgan/g_03000000'
|
111 |
+
...
|
112 |
+
[Success] test CUDA fused vs. plain torch BigVGAN inference
|
113 |
+
> mean_difference=0.0007238413265440613
|
114 |
+
...
|
115 |
+
```
|
116 |
+
|
117 |
+
If you see `[Fail] test CUDA fused vs. plain torch BigVGAN inference`, it means that the CUDA kernel inference is incorrect. Please check if `nvcc` installed in your system is compatible with your PyTorch version.
|
118 |
+
|
119 |
+
|
120 |
+
## Pretrained Models
|
121 |
+
We provide the [pretrained models](https://drive.google.com/drive/folders/1L2RDeJMBE7QAI8qV51n0QAf4mkSgUUeE?usp=sharing).
|
122 |
+
One can download the checkpoints of the generator weight (e.g., `g_(training_steps)`) and its discriminator/optimizer states (e.g., `do_(training_steps)`) within the listed folders.
|
123 |
+
|
124 |
+
|Folder Name|Sampling Rate|Mel band|fmax|Upsampling Ratio|Params.|Dataset|Fine-Tuned|
|
125 |
+
|------|---|---|---|---|---|------|---|
|
126 |
+
|bigvgan_v2_44khz_128band_512x|44 kHz|128|22050|512|122M|Large-scale Compilation|No|
|
127 |
+
|bigvgan_v2_44khz_128band_256x|44 kHz|128|22050|256|112M|Large-scale Compilation|No|
|
128 |
+
|bigvgan_v2_24khz_100band_256x|24 kHz|100|12000|256|112M|Large-scale Compilation|No|
|
129 |
+
|bigvgan_v2_22khz_80band_256x|22 kHz|80|11025|256|112M|Large-scale Compilation|No|
|
130 |
+
|bigvgan_v2_22khz_80band_fmax8k_256x|22 kHz|80|8000|256|112M|Large-scale Compilation|No|
|
131 |
+
|bigvgan_24khz_100band|24 kHz|100|12000|256|112M|LibriTTS|No|
|
132 |
+
|bigvgan_base_24khz_100band|24 kHz|100|12000|256|14M|LibriTTS|No|
|
133 |
+
|bigvgan_22khz_80band|22 kHz|80|8000|256|112M|LibriTTS + VCTK + LJSpeech|No|
|
134 |
+
|bigvgan_base_22khz_80band|22 kHz|80|8000|256|14M|LibriTTS + VCTK + LJSpeech|No|
|
135 |
+
|
136 |
+
The paper results are based on the original 24kHz BigVGAN models (`bigvgan_24khz_100band` and `bigvgan_base_24khz_100band`) trained on LibriTTS dataset.
|
137 |
+
We also provide 22kHz BigVGAN models with band-limited setup (i.e., fmax=8000) for TTS applications.
|
138 |
+
Note that the checkpoints use ``snakebeta`` activation with log scale parameterization, which have the best overall quality.
|
139 |
+
|
140 |
+
You can fine-tune the models by downloading the checkpoints (both the generator weight and its discrimiantor/optimizer states) and resuming training using your audio dataset.
|
141 |
+
|
142 |
+
## Training Details of BigVGAN-v2
|
143 |
+
Comapred to the original BigVGAN, the pretrained checkpoints of BigVGAN-v2 used `batch_size=32` with a longer `segment_size=65536` and are trained using 8 A100 GPUs.
|
144 |
+
|
145 |
+
Note that the BigVGAN-v2 `json` config files in `./configs` use `batch_size=4` as default to fit in a single A100 GPU for training. You can fine-tune the models adjusting `batch_size` depending on your GPUs.
|
146 |
+
|
147 |
+
When training BigVGAN-v2 from scratch with small batch size, it can potentially encounter the early divergence problem mentioned in the paper. In such case, we recommend lowering the `clip_grad_norm` value (e.g. `100`) for the early training iterations (e.g. 20000 steps) and increase the value to the default `500`.
|
148 |
+
|
149 |
+
## Evaluation Results of BigVGAN-v2
|
150 |
+
Below are the objective results of the 24kHz model (`bigvgan_v2_24khz_100band_256x`) obtained from the LibriTTS `dev` sets. BigVGAN-v2 shows noticeable improvements of the metrics. The model also exhibits reduced perceptual artifacts, especially for non-speech audio.
|
151 |
+
|
152 |
+
|Model|Dataset|Steps|PESQ(↑)|M-STFT(↓)|MCD(↓)|Periodicity(↓)|V/UV F1(↑)|
|
153 |
+
|-------|-----|-----|-----|-----|-----|-----|-----|
|
154 |
+
|BigVGAN|LibriTTS|1M|4.027|0.7997|0.3745|0.1018|0.9598|
|
155 |
+
|BigVGAN|LibriTTS|5M|4.256|0.7409|0.2988|0.0809|0.9698|
|
156 |
+
|BigVGAN-v2|Large-scale Compilation|3M|**4.359**|**0.7134**|0.3060|**0.0621**|**0.9777**|
|
157 |
+
|
158 |
+
## Acknowledgements
|
159 |
+
We thank Vijay Anand Korthikanti and Kevin J. Shih for their generous support in implementing the CUDA kernel for inference.
|
160 |
+
|
161 |
+
## References
|
162 |
+
* [HiFi-GAN](https://github.com/jik876/hifi-gan) (for generator and multi-period discriminator)
|
163 |
+
* [Snake](https://github.com/EdwardDixon/snake) (for periodic activation)
|
164 |
+
* [Alias-free-torch](https://github.com/junjun3518/alias-free-torch) (for anti-aliasing)
|
165 |
+
* [Julius](https://github.com/adefossez/julius) (for low-pass filter)
|
166 |
+
* [UnivNet](https://github.com/mindslab-ai/univnet) (for multi-resolution discriminator)
|
167 |
+
* [descript-audio-codec](https://github.com/descriptinc/descript-audio-codec) and [vocos](https://github.com/gemelo-ai/vocos) (for multi-band multi-scale STFT discriminator and multi-scale mel spectrogram loss)
|
168 |
+
* [Amphion](https://github.com/open-mmlab/Amphion) (for multi-scale sub-band CQT discriminator)
|
169 |
+
|
activations.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn, sin, pow
|
6 |
+
from torch.nn import Parameter
|
7 |
+
|
8 |
+
|
9 |
+
class Snake(nn.Module):
|
10 |
+
'''
|
11 |
+
Implementation of a sine-based periodic activation function
|
12 |
+
Shape:
|
13 |
+
- Input: (B, C, T)
|
14 |
+
- Output: (B, C, T), same shape as the input
|
15 |
+
Parameters:
|
16 |
+
- alpha - trainable parameter
|
17 |
+
References:
|
18 |
+
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
19 |
+
https://arxiv.org/abs/2006.08195
|
20 |
+
Examples:
|
21 |
+
>>> a1 = snake(256)
|
22 |
+
>>> x = torch.randn(256)
|
23 |
+
>>> x = a1(x)
|
24 |
+
'''
|
25 |
+
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
26 |
+
'''
|
27 |
+
Initialization.
|
28 |
+
INPUT:
|
29 |
+
- in_features: shape of the input
|
30 |
+
- alpha: trainable parameter
|
31 |
+
alpha is initialized to 1 by default, higher values = higher-frequency.
|
32 |
+
alpha will be trained along with the rest of your model.
|
33 |
+
'''
|
34 |
+
super(Snake, self).__init__()
|
35 |
+
self.in_features = in_features
|
36 |
+
|
37 |
+
# initialize alpha
|
38 |
+
self.alpha_logscale = alpha_logscale
|
39 |
+
if self.alpha_logscale: # log scale alphas initialized to zeros
|
40 |
+
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
41 |
+
else: # linear scale alphas initialized to ones
|
42 |
+
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
43 |
+
|
44 |
+
self.alpha.requires_grad = alpha_trainable
|
45 |
+
|
46 |
+
self.no_div_by_zero = 0.000000001
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
'''
|
50 |
+
Forward pass of the function.
|
51 |
+
Applies the function to the input elementwise.
|
52 |
+
Snake ∶= x + 1/a * sin^2 (xa)
|
53 |
+
'''
|
54 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
55 |
+
if self.alpha_logscale:
|
56 |
+
alpha = torch.exp(alpha)
|
57 |
+
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
58 |
+
|
59 |
+
return x
|
60 |
+
|
61 |
+
|
62 |
+
class SnakeBeta(nn.Module):
|
63 |
+
'''
|
64 |
+
A modified Snake function which uses separate parameters for the magnitude of the periodic components
|
65 |
+
Shape:
|
66 |
+
- Input: (B, C, T)
|
67 |
+
- Output: (B, C, T), same shape as the input
|
68 |
+
Parameters:
|
69 |
+
- alpha - trainable parameter that controls frequency
|
70 |
+
- beta - trainable parameter that controls magnitude
|
71 |
+
References:
|
72 |
+
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
73 |
+
https://arxiv.org/abs/2006.08195
|
74 |
+
Examples:
|
75 |
+
>>> a1 = snakebeta(256)
|
76 |
+
>>> x = torch.randn(256)
|
77 |
+
>>> x = a1(x)
|
78 |
+
'''
|
79 |
+
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
80 |
+
'''
|
81 |
+
Initialization.
|
82 |
+
INPUT:
|
83 |
+
- in_features: shape of the input
|
84 |
+
- alpha - trainable parameter that controls frequency
|
85 |
+
- beta - trainable parameter that controls magnitude
|
86 |
+
alpha is initialized to 1 by default, higher values = higher-frequency.
|
87 |
+
beta is initialized to 1 by default, higher values = higher-magnitude.
|
88 |
+
alpha will be trained along with the rest of your model.
|
89 |
+
'''
|
90 |
+
super(SnakeBeta, self).__init__()
|
91 |
+
self.in_features = in_features
|
92 |
+
|
93 |
+
# initialize alpha
|
94 |
+
self.alpha_logscale = alpha_logscale
|
95 |
+
if self.alpha_logscale: # log scale alphas initialized to zeros
|
96 |
+
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
97 |
+
self.beta = Parameter(torch.zeros(in_features) * alpha)
|
98 |
+
else: # linear scale alphas initialized to ones
|
99 |
+
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
100 |
+
self.beta = Parameter(torch.ones(in_features) * alpha)
|
101 |
+
|
102 |
+
self.alpha.requires_grad = alpha_trainable
|
103 |
+
self.beta.requires_grad = alpha_trainable
|
104 |
+
|
105 |
+
self.no_div_by_zero = 0.000000001
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
'''
|
109 |
+
Forward pass of the function.
|
110 |
+
Applies the function to the input elementwise.
|
111 |
+
SnakeBeta ∶= x + 1/b * sin^2 (xa)
|
112 |
+
'''
|
113 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
114 |
+
beta = self.beta.unsqueeze(0).unsqueeze(-1)
|
115 |
+
if self.alpha_logscale:
|
116 |
+
alpha = torch.exp(alpha)
|
117 |
+
beta = torch.exp(beta)
|
118 |
+
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
119 |
+
|
120 |
+
return x
|
alias_free_cuda/__init__.py
ADDED
File without changes
|
alias_free_cuda/activation1d.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from alias_free_torch.resample import UpSample1d, DownSample1d
|
7 |
+
# load fused CUDA kernel: this enables importing anti_alias_activation_cuda
|
8 |
+
from alias_free_cuda import load
|
9 |
+
load.load()
|
10 |
+
|
11 |
+
class FusedAntiAliasActivation(torch.autograd.Function):
|
12 |
+
"""
|
13 |
+
Assumes filter size 12, replication padding on upsampling, and logscale alpha/beta parameters as inputs
|
14 |
+
"""
|
15 |
+
@staticmethod
|
16 |
+
def forward(ctx, inputs, ftr, alpha, beta):
|
17 |
+
import anti_alias_activation_cuda
|
18 |
+
activation_results = anti_alias_activation_cuda.forward(inputs, ftr, alpha, beta)
|
19 |
+
return activation_results
|
20 |
+
|
21 |
+
@staticmethod
|
22 |
+
def backward(ctx, output_grads):
|
23 |
+
# TODO: implement bwd pass
|
24 |
+
raise NotImplementedError
|
25 |
+
return output_grads, None, None
|
26 |
+
|
27 |
+
class Activation1d(nn.Module):
|
28 |
+
def __init__(self,
|
29 |
+
activation,
|
30 |
+
up_ratio: int = 2,
|
31 |
+
down_ratio: int = 2,
|
32 |
+
up_kernel_size: int = 12,
|
33 |
+
down_kernel_size: int = 12,
|
34 |
+
fused: bool = True
|
35 |
+
):
|
36 |
+
super().__init__()
|
37 |
+
self.up_ratio = up_ratio
|
38 |
+
self.down_ratio = down_ratio
|
39 |
+
self.act = activation
|
40 |
+
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
41 |
+
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
42 |
+
|
43 |
+
self.fused = fused # whether to use fused CUDA kernel or not
|
44 |
+
|
45 |
+
|
46 |
+
def forward(self, x):
|
47 |
+
if not self.fused:
|
48 |
+
x = self.upsample(x)
|
49 |
+
x = self.act(x)
|
50 |
+
x = self.downsample(x)
|
51 |
+
return x
|
52 |
+
else:
|
53 |
+
if self.act.__class__.__name__ == "Snake":
|
54 |
+
beta = self.act.alpha.data # snake uses same params for alpha and beta
|
55 |
+
else:
|
56 |
+
beta = self.act.beta.data # snakebeta uses different params for alpha and beta
|
57 |
+
alpha = self.act.alpha.data
|
58 |
+
if not self.act.alpha_logscale: # exp baked into cuda kernel, cancel it out with a log
|
59 |
+
alpha = torch.log(alpha)
|
60 |
+
beta = torch.log(beta)
|
61 |
+
x = FusedAntiAliasActivation.apply(x, self.upsample.filter, alpha, beta)
|
62 |
+
x = self.downsample(x)
|
63 |
+
return x
|
alias_free_cuda/anti_alias_activation.cpp
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* coding=utf-8
|
2 |
+
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*/
|
16 |
+
|
17 |
+
#include <cuda_fp16.h>
|
18 |
+
#include <torch/extension.h>
|
19 |
+
#include <vector>
|
20 |
+
|
21 |
+
namespace anti_alias_activation {
|
22 |
+
|
23 |
+
torch::Tensor fwd_cuda(torch::Tensor const& input,
|
24 |
+
torch::Tensor const& filter,
|
25 |
+
torch::Tensor const& alpha,
|
26 |
+
torch::Tensor const& beta
|
27 |
+
);
|
28 |
+
|
29 |
+
torch::Tensor fwd(torch::Tensor const& input,
|
30 |
+
torch::Tensor const& filter,
|
31 |
+
torch::Tensor const& alpha,
|
32 |
+
torch::Tensor const& beta
|
33 |
+
) {
|
34 |
+
AT_ASSERTM(input.dim() == 3, "expected 3D tensor");
|
35 |
+
//AT_ASSERTM((input.scalar_type() == at::ScalarType::Half) ||
|
36 |
+
// (input.scalar_type() == at::ScalarType::BFloat16),
|
37 |
+
// "Only fp16 and bf16 are supported");
|
38 |
+
|
39 |
+
return fwd_cuda(input, filter, alpha, beta);
|
40 |
+
}
|
41 |
+
|
42 |
+
} // end namespace anti_alias_activation
|
43 |
+
|
44 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
45 |
+
m.def("forward",
|
46 |
+
&anti_alias_activation::fwd,
|
47 |
+
"Anti Alias Activation -- Forward.");
|
48 |
+
}
|
alias_free_cuda/anti_alias_activation_cuda.cu
ADDED
@@ -0,0 +1,314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* coding=utf-8
|
2 |
+
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*/
|
16 |
+
|
17 |
+
#include <ATen/ATen.h>
|
18 |
+
#include <cuda.h>
|
19 |
+
#include <cuda_runtime.h>
|
20 |
+
#include <cuda_fp16.h>
|
21 |
+
#include <cuda_profiler_api.h>
|
22 |
+
#include <ATen/cuda/CUDAContext.h>
|
23 |
+
#include <torch/extension.h>
|
24 |
+
#include "type_shim.h"
|
25 |
+
#include <assert.h>
|
26 |
+
#include <cfloat>
|
27 |
+
#include <limits>
|
28 |
+
#include <stdint.h>
|
29 |
+
#include <c10/macros/Macros.h>
|
30 |
+
|
31 |
+
namespace {
|
32 |
+
|
33 |
+
/*
|
34 |
+
template <typename Datatype, int ELEMENTS_PER_LDG>
|
35 |
+
__device__ __inline__ void copy_vector(Datatype *dst, const Datatype *src);
|
36 |
+
|
37 |
+
template <>
|
38 |
+
__device__ __inline__ void copy_vector<c10::BFloat16, 1>(c10::BFloat16 *dst, const c10::BFloat16 *src) { *dst = *src; }
|
39 |
+
|
40 |
+
template <>
|
41 |
+
__device__ __inline__ void copy_vector<c10::BFloat16, 4>(c10::BFloat16 *dst, const c10::BFloat16 *src) { *((float2*) dst) = *((float2*) src); }
|
42 |
+
|
43 |
+
template <>
|
44 |
+
__device__ __inline__ void copy_vector<c10::Half, 1>(c10::Half *dst, const c10::Half *src) { *dst = *src; }
|
45 |
+
|
46 |
+
template <>
|
47 |
+
__device__ __inline__ void copy_vector<c10::Half, 4>(c10::Half *dst, const c10::Half *src) { *((float2*) dst) = *((float2*) src); }
|
48 |
+
|
49 |
+
template <>
|
50 |
+
__device__ __inline__ void copy_vector<uint8_t, 1>(uint8_t *dst, const uint8_t *src) { *dst = *src; }
|
51 |
+
|
52 |
+
template <>
|
53 |
+
__device__ __inline__ void copy_vector<uint8_t, 4>(uint8_t *dst, const uint8_t *src) {*((half2*) dst) = *((half2*) src); }
|
54 |
+
|
55 |
+
int log2_ceil(int value) {
|
56 |
+
int log2_value = 0;
|
57 |
+
while ((1 << log2_value) < value) ++log2_value;
|
58 |
+
return log2_value;
|
59 |
+
}
|
60 |
+
|
61 |
+
template<typename T>
|
62 |
+
struct Add {
|
63 |
+
__device__ __forceinline__ T operator()(T a, T b) const {
|
64 |
+
return a + b;
|
65 |
+
}
|
66 |
+
};
|
67 |
+
|
68 |
+
template<typename T>
|
69 |
+
struct Max {
|
70 |
+
__device__ __forceinline__ T operator()(T a, T b) const {
|
71 |
+
return a < b ? b : a;
|
72 |
+
}
|
73 |
+
};
|
74 |
+
|
75 |
+
template <typename T>
|
76 |
+
__device__ __forceinline__ T WARP_SHFL_XOR_NATIVE(T value, int laneMask, int width = warpSize, unsigned int mask = 0xffffffff)
|
77 |
+
{
|
78 |
+
#if CUDA_VERSION >= 9000
|
79 |
+
return __shfl_xor_sync(mask, value, laneMask, width);
|
80 |
+
#else
|
81 |
+
return __shfl_xor(value, laneMask, width);
|
82 |
+
#endif
|
83 |
+
}
|
84 |
+
|
85 |
+
template <typename acc_t, int WARP_BATCH, int WARP_SIZE, template<typename> class ReduceOp>
|
86 |
+
__device__ __forceinline__ void warp_reduce(acc_t* sum) {
|
87 |
+
ReduceOp<acc_t> r;
|
88 |
+
#pragma unroll
|
89 |
+
for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2) {
|
90 |
+
#pragma unroll
|
91 |
+
for (int i = 0; i < WARP_BATCH; ++i) {
|
92 |
+
acc_t b = WARP_SHFL_XOR_NATIVE(sum[i], offset, WARP_SIZE);
|
93 |
+
sum[i] = r(sum[i], b);
|
94 |
+
}
|
95 |
+
}
|
96 |
+
}
|
97 |
+
*/
|
98 |
+
|
99 |
+
template <typename input_t, typename output_t, typename acc_t>
|
100 |
+
__global__ void anti_alias_activation_forward(
|
101 |
+
output_t *dst,
|
102 |
+
const input_t *src,
|
103 |
+
const input_t *ftr,
|
104 |
+
const input_t *alpha,
|
105 |
+
const input_t *beta,
|
106 |
+
int batch_size,
|
107 |
+
int channels,
|
108 |
+
int seq_len)
|
109 |
+
{
|
110 |
+
// WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and
|
111 |
+
constexpr int ELEMENTS_PER_LDG_STG = 1; //(WARP_ITERATIONS < 4) ? 1 : 4;
|
112 |
+
constexpr int BUFFER_SIZE = 32;
|
113 |
+
constexpr int FILTER_SIZE = 12;
|
114 |
+
constexpr int HALF_FILTER_SIZE = 6;
|
115 |
+
constexpr int REPLICATION_PAD = 5; // 5 on each side
|
116 |
+
|
117 |
+
// blockDim/threadIdx = (128, 1, 1)
|
118 |
+
// gridDim/blockIdx = (seq_blocks, channels, batches)
|
119 |
+
int block_offset = (blockIdx.x * 128 * BUFFER_SIZE + seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
|
120 |
+
int local_offset = threadIdx.x * BUFFER_SIZE;
|
121 |
+
int seq_offset = blockIdx.x * 128 * BUFFER_SIZE + local_offset;
|
122 |
+
|
123 |
+
|
124 |
+
//int intermediate_seq_len = seq_len * 2 - 1 + 4 * REPLICATION_PAD;
|
125 |
+
//int intermediate_block_offset = (blockIdx.x * 128 * BUFFER_SIZE * 2 + intermediate_seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
|
126 |
+
//int intermediate_local_offset = threadIdx.x * BUFFER_SIZE * 2;
|
127 |
+
|
128 |
+
int output_seq_len = seq_len * 2 ; //
|
129 |
+
int output_block_offset = (blockIdx.x * 128 * BUFFER_SIZE * 2 + output_seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
|
130 |
+
int output_local_offset = threadIdx.x * BUFFER_SIZE * 2;
|
131 |
+
int output_seq_offset = blockIdx.x * 128 * BUFFER_SIZE *2 + output_local_offset;
|
132 |
+
// get values needed for replication padding before moving pointer
|
133 |
+
const input_t *right_most_pntr = src + (seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
|
134 |
+
input_t seq_left_most_value = right_most_pntr[0];
|
135 |
+
input_t seq_right_most_value = right_most_pntr[seq_len - 1];
|
136 |
+
|
137 |
+
src += block_offset + local_offset;
|
138 |
+
dst += output_block_offset + output_local_offset ;
|
139 |
+
alpha = alpha + blockIdx.y;
|
140 |
+
input_t alpha_val = expf(alpha[0]);
|
141 |
+
beta = beta + blockIdx.y;
|
142 |
+
input_t beta_val = expf(beta[0]);
|
143 |
+
// load data from global memory
|
144 |
+
input_t elements[2*FILTER_SIZE+2*BUFFER_SIZE] = {0};
|
145 |
+
input_t intermediates[2*FILTER_SIZE+2*BUFFER_SIZE] = {0};
|
146 |
+
//output_t output[2*BUFFER_SIZE];
|
147 |
+
input_t filter[FILTER_SIZE];
|
148 |
+
//input_t temp_data[ELEMENTS_PER_LDG_STG];
|
149 |
+
//uint8_t temp_mask[ELEMENTS_PER_LDG_STG];
|
150 |
+
|
151 |
+
#pragma unroll
|
152 |
+
for (int it = 0; it < FILTER_SIZE; it+=1) {
|
153 |
+
filter[it] = ftr[it];
|
154 |
+
}
|
155 |
+
|
156 |
+
|
157 |
+
#pragma unroll
|
158 |
+
for (int it = -HALF_FILTER_SIZE; it < BUFFER_SIZE + HALF_FILTER_SIZE ; it+=1) {
|
159 |
+
int element_index = seq_offset + it;
|
160 |
+
if ((element_index < 0) && (element_index >= -REPLICATION_PAD)) {
|
161 |
+
elements[2*(HALF_FILTER_SIZE+it)] = 2*seq_left_most_value;
|
162 |
+
}
|
163 |
+
if ((element_index >= seq_len) && (element_index < seq_len + REPLICATION_PAD)) {
|
164 |
+
elements[2*(HALF_FILTER_SIZE+it)] = 2*seq_right_most_value;
|
165 |
+
}
|
166 |
+
if ((element_index >= 0) && (element_index < seq_len)) {
|
167 |
+
elements[2*(HALF_FILTER_SIZE+it)] = 2*src[it];
|
168 |
+
}
|
169 |
+
}
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
// apply filter
|
174 |
+
#pragma unroll
|
175 |
+
for (int it = 0; it < (2 * BUFFER_SIZE + 2*FILTER_SIZE); it+=1) {
|
176 |
+
input_t acc = 0.0;
|
177 |
+
|
178 |
+
int element_index = output_seq_offset + it; // index for output
|
179 |
+
#pragma unroll
|
180 |
+
for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx+=1){
|
181 |
+
if ((element_index + f_idx) >= 0){
|
182 |
+
acc += filter[f_idx] * elements[it+f_idx];
|
183 |
+
}
|
184 |
+
}
|
185 |
+
intermediates[it] = acc;
|
186 |
+
}
|
187 |
+
|
188 |
+
double no_div_by_zero = 0.000000001;
|
189 |
+
#pragma unroll
|
190 |
+
for (int it = 0; it < 12 + 2 * BUFFER_SIZE; it++) {
|
191 |
+
intermediates[it] += (1.0/(beta_val + no_div_by_zero)) * sinf(intermediates[it] * alpha_val) * sinf(intermediates[it] * alpha_val);
|
192 |
+
}
|
193 |
+
|
194 |
+
|
195 |
+
// now copy to output
|
196 |
+
#pragma unroll
|
197 |
+
for (int it = 0; it < 2*BUFFER_SIZE; it+=1){
|
198 |
+
int element_index = output_seq_offset + it;
|
199 |
+
if (element_index < output_seq_len) {
|
200 |
+
dst[it] = intermediates[it+6];
|
201 |
+
}
|
202 |
+
}
|
203 |
+
|
204 |
+
|
205 |
+
|
206 |
+
// for (int it = 0; it < BUFFER_SIZE; it+=ELEMENTS_PER_LDG_STG) {
|
207 |
+
// int element_index = seq_offset + it;
|
208 |
+
// if (element_index < seq_len) {
|
209 |
+
// dst[it] = output[it];
|
210 |
+
// }
|
211 |
+
// }
|
212 |
+
|
213 |
+
|
214 |
+
// // Upsample convolution
|
215 |
+
// for (int it = 0; it < 2 * BUFFER_SIZE + 12; it+=1) {
|
216 |
+
// input_t acc = 0.0;
|
217 |
+
|
218 |
+
// for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx+=1){
|
219 |
+
// acc += filter[f_idx] * elements[it+f_idx];
|
220 |
+
// }
|
221 |
+
// intermediates[it] = acc;
|
222 |
+
// }
|
223 |
+
|
224 |
+
// // correct the corners of intermediates
|
225 |
+
// if (seq_offset == 0) {
|
226 |
+
// for (int it = 0; it < 6; it+=1)
|
227 |
+
// intermediates[it] = 0;
|
228 |
+
// }
|
229 |
+
|
230 |
+
// if (seq_offset + 32 >= seq_len) {
|
231 |
+
// int offset = seq_len % 32 == 0 ? 32 : seq_len % 32;
|
232 |
+
|
233 |
+
// for (int it = 0; it < 6; it++) {
|
234 |
+
// intermediates[6+2*offset+it] = 0;
|
235 |
+
// }
|
236 |
+
// }
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
+
|
241 |
+
// for (int it = 0; it < BUFFER_SIZE; it+=ELEMENTS_PER_LDG_STG) {
|
242 |
+
// int element_index = seq_offset + it;
|
243 |
+
// if (element_index < seq_len) {
|
244 |
+
// dst[it] = output[it];
|
245 |
+
// }
|
246 |
+
// }
|
247 |
+
}
|
248 |
+
|
249 |
+
template<typename input_t, typename output_t, typename acc_t>
|
250 |
+
void dispatch_anti_alias_activation_forward(
|
251 |
+
output_t *dst,
|
252 |
+
const input_t *src,
|
253 |
+
const input_t *ftr,
|
254 |
+
const input_t *alpha,
|
255 |
+
const input_t *beta,
|
256 |
+
int batch_size,
|
257 |
+
int channels,
|
258 |
+
int seq_len)
|
259 |
+
{
|
260 |
+
if (seq_len == 0) {
|
261 |
+
return;
|
262 |
+
} else {
|
263 |
+
// use 128 threads per block to maximimize gpu utilization
|
264 |
+
constexpr int threads_per_block = 128;
|
265 |
+
constexpr int seq_len_per_block = 4096;
|
266 |
+
int blocks_per_seq_len = (seq_len + seq_len_per_block - 1) / seq_len_per_block;
|
267 |
+
dim3 blocks(blocks_per_seq_len, channels, batch_size);
|
268 |
+
dim3 threads(threads_per_block, 1, 1);
|
269 |
+
|
270 |
+
anti_alias_activation_forward<input_t, output_t, acc_t>
|
271 |
+
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, ftr, alpha, beta, batch_size, channels, seq_len);
|
272 |
+
}
|
273 |
+
}
|
274 |
+
}
|
275 |
+
|
276 |
+
namespace anti_alias_activation {
|
277 |
+
|
278 |
+
torch::Tensor fwd_cuda(torch::Tensor const& input, torch::Tensor const& filter, torch::Tensor const& alpha, torch::Tensor const& beta)
|
279 |
+
{
|
280 |
+
// input is a 4d tensor with dimensions [batches, attn_heads, seq_len, seq_len]
|
281 |
+
const int batches = input.size(0);
|
282 |
+
const int channels = input.size(1);
|
283 |
+
const int seq_len = input.size(2);
|
284 |
+
|
285 |
+
// Output
|
286 |
+
auto act_options = input.options().requires_grad(false);
|
287 |
+
int output_seq_len = seq_len*2; // we'll be dilating between each element by interspersing with zeros
|
288 |
+
|
289 |
+
torch::Tensor anti_alias_activation_results =
|
290 |
+
torch::empty({batches, channels, output_seq_len}, act_options);
|
291 |
+
|
292 |
+
// Softmax Intermediate Result Ptr
|
293 |
+
void* input_ptr = static_cast<void*>(input.data_ptr());
|
294 |
+
void* filter_ptr = static_cast<void*>(filter.data_ptr());
|
295 |
+
void* alpha_ptr = static_cast<void*>(alpha.data_ptr());
|
296 |
+
void* beta_ptr = static_cast<void*>(beta.data_ptr());
|
297 |
+
void* anti_alias_activation_results_ptr = static_cast<void*>(anti_alias_activation_results.data_ptr());
|
298 |
+
|
299 |
+
DISPATCH_FLOAT_HALF_AND_BFLOAT(
|
300 |
+
input.scalar_type(),
|
301 |
+
"dispatch anti alias activation_forward",
|
302 |
+
dispatch_anti_alias_activation_forward<scalar_t, scalar_t, float>(
|
303 |
+
reinterpret_cast<scalar_t*>(anti_alias_activation_results_ptr),
|
304 |
+
reinterpret_cast<const scalar_t*>(input_ptr),
|
305 |
+
reinterpret_cast<const scalar_t*>(filter_ptr),
|
306 |
+
reinterpret_cast<const scalar_t*>(alpha_ptr),
|
307 |
+
reinterpret_cast<const scalar_t*>(beta_ptr),
|
308 |
+
batches,
|
309 |
+
channels,
|
310 |
+
seq_len);
|
311 |
+
);
|
312 |
+
return anti_alias_activation_results;
|
313 |
+
}
|
314 |
+
}
|
alias_free_cuda/compat.h
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* coding=utf-8
|
2 |
+
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*/
|
16 |
+
|
17 |
+
/*This code is copied fron NVIDIA apex:
|
18 |
+
* https://github.com/NVIDIA/apex
|
19 |
+
* with minor changes. */
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
#ifndef TORCH_CHECK
|
24 |
+
#define TORCH_CHECK AT_CHECK
|
25 |
+
#endif
|
26 |
+
|
27 |
+
#ifdef VERSION_GE_1_3
|
28 |
+
#define DATA_PTR data_ptr
|
29 |
+
#else
|
30 |
+
#define DATA_PTR data
|
31 |
+
#endif
|
alias_free_cuda/load.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
import os
|
5 |
+
import pathlib
|
6 |
+
import subprocess
|
7 |
+
|
8 |
+
from torch.utils import cpp_extension
|
9 |
+
|
10 |
+
# Setting this param to a list has a problem of generating different
|
11 |
+
# compilation commands (with diferent order of architectures) and
|
12 |
+
# leading to recompilation of fused kernels. Set it to empty string
|
13 |
+
# to avoid recompilation and assign arch flags explicity in
|
14 |
+
# extra_cuda_cflags below
|
15 |
+
os.environ["TORCH_CUDA_ARCH_LIST"] = ""
|
16 |
+
|
17 |
+
|
18 |
+
def load():
|
19 |
+
# Check if cuda 11 is installed for compute capability 8.0
|
20 |
+
cc_flag = []
|
21 |
+
_, bare_metal_major, _ = _get_cuda_bare_metal_version(
|
22 |
+
cpp_extension.CUDA_HOME)
|
23 |
+
if int(bare_metal_major) >= 11:
|
24 |
+
cc_flag.append('-gencode')
|
25 |
+
cc_flag.append('arch=compute_80,code=sm_80')
|
26 |
+
|
27 |
+
# Build path
|
28 |
+
srcpath = pathlib.Path(__file__).parent.absolute()
|
29 |
+
buildpath = srcpath / 'build'
|
30 |
+
_create_build_dir(buildpath)
|
31 |
+
|
32 |
+
# Helper function to build the kernels.
|
33 |
+
def _cpp_extention_load_helper(name, sources, extra_cuda_flags):
|
34 |
+
return cpp_extension.load(
|
35 |
+
name=name,
|
36 |
+
sources=sources,
|
37 |
+
build_directory=buildpath,
|
38 |
+
extra_cflags=['-O3',],
|
39 |
+
extra_cuda_cflags=['-O3',
|
40 |
+
'-gencode', 'arch=compute_70,code=sm_70',
|
41 |
+
'--use_fast_math'] + extra_cuda_flags + cc_flag,
|
42 |
+
verbose=True
|
43 |
+
)
|
44 |
+
|
45 |
+
extra_cuda_flags = ['-U__CUDA_NO_HALF_OPERATORS__',
|
46 |
+
'-U__CUDA_NO_HALF_CONVERSIONS__',
|
47 |
+
'--expt-relaxed-constexpr',
|
48 |
+
'--expt-extended-lambda']
|
49 |
+
|
50 |
+
sources=[srcpath / 'anti_alias_activation.cpp',
|
51 |
+
srcpath / 'anti_alias_activation_cuda.cu']
|
52 |
+
anti_alias_activation_cuda = _cpp_extention_load_helper(
|
53 |
+
"anti_alias_activation_cuda", sources, extra_cuda_flags)
|
54 |
+
|
55 |
+
def _get_cuda_bare_metal_version(cuda_dir):
|
56 |
+
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"],
|
57 |
+
universal_newlines=True)
|
58 |
+
output = raw_output.split()
|
59 |
+
release_idx = output.index("release") + 1
|
60 |
+
release = output[release_idx].split(".")
|
61 |
+
bare_metal_major = release[0]
|
62 |
+
bare_metal_minor = release[1][0]
|
63 |
+
|
64 |
+
return raw_output, bare_metal_major, bare_metal_minor
|
65 |
+
|
66 |
+
|
67 |
+
def _create_build_dir(buildpath):
|
68 |
+
try:
|
69 |
+
os.mkdir(buildpath)
|
70 |
+
except OSError:
|
71 |
+
if not os.path.isdir(buildpath):
|
72 |
+
print(f"Creation of the build directory {buildpath} failed")
|
alias_free_cuda/test_activation.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
import math
|
5 |
+
import torch
|
6 |
+
import alias_free_cuda
|
7 |
+
from alias_free_cuda import activation1d
|
8 |
+
from activations import Snake, SnakeBeta
|
9 |
+
|
10 |
+
def test_load_fused_kernels():
|
11 |
+
try:
|
12 |
+
import alias_free_cuda
|
13 |
+
import torch
|
14 |
+
print("[Success] load_fused_kernels")
|
15 |
+
except ImportError as e:
|
16 |
+
print("[Fail] load_fused_kernels")
|
17 |
+
raise e
|
18 |
+
|
19 |
+
def test_anti_alias_activation():
|
20 |
+
data = torch.rand((10, 10, 50000), device='cuda')
|
21 |
+
|
22 |
+
# check activations.Snake cuda vs. torch
|
23 |
+
fused_anti_alias_activation = activation1d.Activation1d(activation=Snake(10), fused=True).cuda()
|
24 |
+
fused_activation_output = fused_anti_alias_activation(data)
|
25 |
+
|
26 |
+
torch_anti_alias_activation = activation1d.Activation1d(activation=Snake(10), fused=False).cuda()
|
27 |
+
torch_activation_output = torch_anti_alias_activation(data)
|
28 |
+
|
29 |
+
test_result = (fused_activation_output - torch_activation_output).abs()
|
30 |
+
|
31 |
+
while test_result.dim() != 1:
|
32 |
+
test_result = test_result.mean(dim=-1)
|
33 |
+
|
34 |
+
diff = test_result.mean(dim=-1)
|
35 |
+
|
36 |
+
if diff <= 1e-3:
|
37 |
+
print(
|
38 |
+
f"\n[Success] test_fused_anti_alias_activation"
|
39 |
+
f"\n > mean_difference={diff}"
|
40 |
+
f"\n > fused_values={fused_activation_output[-1][-1][-100:].tolist()}"
|
41 |
+
f"\n > torch_values={torch_activation_output[-1][-1][-100:].tolist()}"
|
42 |
+
)
|
43 |
+
else:
|
44 |
+
print(
|
45 |
+
f"\n[Fail] test_fused_anti_alias_activation"
|
46 |
+
f"\n > mean_difference={diff}, "
|
47 |
+
f"\n > fused_values={fused_activation_output[-1][-1][-30:].tolist()}, "
|
48 |
+
f"\n > torch_values={torch_activation_output[-1][-1][-30:].tolist()}"
|
49 |
+
)
|
50 |
+
|
51 |
+
if __name__ == "__main__":
|
52 |
+
from alias_free_cuda import load
|
53 |
+
load.load()
|
54 |
+
test_load_fused_kernels()
|
55 |
+
test_anti_alias_activation()
|
alias_free_cuda/test_activation_snake_beta.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
import math
|
5 |
+
import torch
|
6 |
+
import alias_free_cuda
|
7 |
+
from alias_free_cuda import activation1d
|
8 |
+
from activations import Snake, SnakeBeta
|
9 |
+
|
10 |
+
def test_load_fused_kernels():
|
11 |
+
try:
|
12 |
+
import alias_free_cuda
|
13 |
+
import torch
|
14 |
+
print("[Success] load_fused_kernels")
|
15 |
+
except ImportError as e:
|
16 |
+
print("[Fail] load_fused_kernels")
|
17 |
+
raise e
|
18 |
+
|
19 |
+
def test_anti_alias_activation():
|
20 |
+
data = torch.rand((10, 10, 50000), device='cuda')
|
21 |
+
|
22 |
+
# check activations.Snake cuda vs. torch
|
23 |
+
fused_anti_alias_activation = activation1d.Activation1d(activation=SnakeBeta(10), fused=True).cuda()
|
24 |
+
fused_activation_output = fused_anti_alias_activation(data)
|
25 |
+
|
26 |
+
torch_anti_alias_activation = activation1d.Activation1d(activation=SnakeBeta(10), fused=False).cuda()
|
27 |
+
torch_activation_output = torch_anti_alias_activation(data)
|
28 |
+
|
29 |
+
test_result = (fused_activation_output - torch_activation_output).abs()
|
30 |
+
|
31 |
+
while test_result.dim() != 1:
|
32 |
+
test_result = test_result.mean(dim=-1)
|
33 |
+
|
34 |
+
diff = test_result.mean(dim=-1)
|
35 |
+
|
36 |
+
if diff <= 1e-3:
|
37 |
+
print(
|
38 |
+
f"\n[Success] test_fused_anti_alias_activation"
|
39 |
+
f"\n > mean_difference={diff}"
|
40 |
+
f"\n > fused_values={fused_activation_output[-1][-1][-100:].tolist()}"
|
41 |
+
f"\n > torch_values={torch_activation_output[-1][-1][-100:].tolist()}"
|
42 |
+
)
|
43 |
+
else:
|
44 |
+
print(
|
45 |
+
f"\n[Fail] test_fused_anti_alias_activation"
|
46 |
+
f"\n > mean_difference={diff}, "
|
47 |
+
f"\n > fused_values={fused_activation_output[-1][-1][-30:].tolist()}, "
|
48 |
+
f"\n > torch_values={torch_activation_output[-1][-1][-30:].tolist()}"
|
49 |
+
)
|
50 |
+
|
51 |
+
if __name__ == "__main__":
|
52 |
+
from alias_free_cuda import load
|
53 |
+
load.load()
|
54 |
+
test_load_fused_kernels()
|
55 |
+
test_anti_alias_activation()
|
alias_free_cuda/type_shim.h
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* coding=utf-8
|
2 |
+
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*/
|
16 |
+
|
17 |
+
|
18 |
+
#include <ATen/ATen.h>
|
19 |
+
#include "compat.h"
|
20 |
+
|
21 |
+
|
22 |
+
#define DISPATCH_FLOAT_HALF_AND_BFLOAT(TYPE, NAME, ...) \
|
23 |
+
switch(TYPE) \
|
24 |
+
{ \
|
25 |
+
case at::ScalarType::Float: \
|
26 |
+
{ \
|
27 |
+
using scalar_t = float; \
|
28 |
+
__VA_ARGS__; \
|
29 |
+
break; \
|
30 |
+
} \
|
31 |
+
case at::ScalarType::Half: \
|
32 |
+
{ \
|
33 |
+
using scalar_t = at::Half; \
|
34 |
+
__VA_ARGS__; \
|
35 |
+
break; \
|
36 |
+
} \
|
37 |
+
case at::ScalarType::BFloat16: \
|
38 |
+
{ \
|
39 |
+
using scalar_t = at::BFloat16; \
|
40 |
+
__VA_ARGS__; \
|
41 |
+
break; \
|
42 |
+
} \
|
43 |
+
default: \
|
44 |
+
AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
|
45 |
+
}
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
#define DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(TYPEIN, TYPEOUT, NAME, ...) \
|
50 |
+
switch(TYPEIN) \
|
51 |
+
{ \
|
52 |
+
case at::ScalarType::Float: \
|
53 |
+
{ \
|
54 |
+
using scalar_t_in = float; \
|
55 |
+
switch(TYPEOUT) \
|
56 |
+
{ \
|
57 |
+
case at::ScalarType::Float: \
|
58 |
+
{ \
|
59 |
+
using scalar_t_out = float; \
|
60 |
+
__VA_ARGS__; \
|
61 |
+
break; \
|
62 |
+
} \
|
63 |
+
case at::ScalarType::Half: \
|
64 |
+
{ \
|
65 |
+
using scalar_t_out = at::Half; \
|
66 |
+
__VA_ARGS__; \
|
67 |
+
break; \
|
68 |
+
} \
|
69 |
+
case at::ScalarType::BFloat16: \
|
70 |
+
{ \
|
71 |
+
using scalar_t_out = at::BFloat16; \
|
72 |
+
__VA_ARGS__; \
|
73 |
+
break; \
|
74 |
+
} \
|
75 |
+
default: \
|
76 |
+
AT_ERROR(#NAME, " not implemented for '", toString(TYPEOUT), "'"); \
|
77 |
+
} \
|
78 |
+
break; \
|
79 |
+
} \
|
80 |
+
case at::ScalarType::Half: \
|
81 |
+
{ \
|
82 |
+
using scalar_t_in = at::Half; \
|
83 |
+
using scalar_t_out = at::Half; \
|
84 |
+
__VA_ARGS__; \
|
85 |
+
break; \
|
86 |
+
} \
|
87 |
+
case at::ScalarType::BFloat16: \
|
88 |
+
{ \
|
89 |
+
using scalar_t_in = at::BFloat16; \
|
90 |
+
using scalar_t_out = at::BFloat16; \
|
91 |
+
__VA_ARGS__; \
|
92 |
+
break; \
|
93 |
+
} \
|
94 |
+
default: \
|
95 |
+
AT_ERROR(#NAME, " not implemented for '", toString(TYPEIN), "'"); \
|
96 |
+
}
|
97 |
+
|
alias_free_torch/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
from .filter import *
|
5 |
+
from .resample import *
|
6 |
+
from .act import *
|
alias_free_torch/act.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import torch.nn as nn
|
5 |
+
from .resample import UpSample1d, DownSample1d
|
6 |
+
|
7 |
+
|
8 |
+
class Activation1d(nn.Module):
|
9 |
+
def __init__(self,
|
10 |
+
activation,
|
11 |
+
up_ratio: int = 2,
|
12 |
+
down_ratio: int = 2,
|
13 |
+
up_kernel_size: int = 12,
|
14 |
+
down_kernel_size: int = 12):
|
15 |
+
super().__init__()
|
16 |
+
self.up_ratio = up_ratio
|
17 |
+
self.down_ratio = down_ratio
|
18 |
+
self.act = activation
|
19 |
+
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
20 |
+
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
21 |
+
|
22 |
+
# x: [B,C,T]
|
23 |
+
def forward(self, x):
|
24 |
+
x = self.upsample(x)
|
25 |
+
x = self.act(x)
|
26 |
+
x = self.downsample(x)
|
27 |
+
|
28 |
+
return x
|
alias_free_torch/filter.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import math
|
8 |
+
|
9 |
+
if 'sinc' in dir(torch):
|
10 |
+
sinc = torch.sinc
|
11 |
+
else:
|
12 |
+
# This code is adopted from adefossez's julius.core.sinc under the MIT License
|
13 |
+
# https://adefossez.github.io/julius/julius/core.html
|
14 |
+
# LICENSE is in incl_licenses directory.
|
15 |
+
def sinc(x: torch.Tensor):
|
16 |
+
"""
|
17 |
+
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
|
18 |
+
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
|
19 |
+
"""
|
20 |
+
return torch.where(x == 0,
|
21 |
+
torch.tensor(1., device=x.device, dtype=x.dtype),
|
22 |
+
torch.sin(math.pi * x) / math.pi / x)
|
23 |
+
|
24 |
+
|
25 |
+
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
|
26 |
+
# https://adefossez.github.io/julius/julius/lowpass.html
|
27 |
+
# LICENSE is in incl_licenses directory.
|
28 |
+
def kaiser_sinc_filter1d(cutoff, half_width, kernel_size): # return filter [1,1,kernel_size]
|
29 |
+
even = (kernel_size % 2 == 0)
|
30 |
+
half_size = kernel_size // 2
|
31 |
+
|
32 |
+
#For kaiser window
|
33 |
+
delta_f = 4 * half_width
|
34 |
+
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
|
35 |
+
if A > 50.:
|
36 |
+
beta = 0.1102 * (A - 8.7)
|
37 |
+
elif A >= 21.:
|
38 |
+
beta = 0.5842 * (A - 21)**0.4 + 0.07886 * (A - 21.)
|
39 |
+
else:
|
40 |
+
beta = 0.
|
41 |
+
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
|
42 |
+
|
43 |
+
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
|
44 |
+
if even:
|
45 |
+
time = (torch.arange(-half_size, half_size) + 0.5)
|
46 |
+
else:
|
47 |
+
time = torch.arange(kernel_size) - half_size
|
48 |
+
if cutoff == 0:
|
49 |
+
filter_ = torch.zeros_like(time)
|
50 |
+
else:
|
51 |
+
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
|
52 |
+
# Normalize filter to have sum = 1, otherwise we will have a small leakage
|
53 |
+
# of the constant component in the input signal.
|
54 |
+
filter_ /= filter_.sum()
|
55 |
+
filter = filter_.view(1, 1, kernel_size)
|
56 |
+
|
57 |
+
return filter
|
58 |
+
|
59 |
+
|
60 |
+
class LowPassFilter1d(nn.Module):
|
61 |
+
def __init__(self,
|
62 |
+
cutoff=0.5,
|
63 |
+
half_width=0.6,
|
64 |
+
stride: int = 1,
|
65 |
+
padding: bool = True,
|
66 |
+
padding_mode: str = 'replicate',
|
67 |
+
kernel_size: int = 12):
|
68 |
+
# kernel_size should be even number for stylegan3 setup,
|
69 |
+
# in this implementation, odd number is also possible.
|
70 |
+
super().__init__()
|
71 |
+
if cutoff < -0.:
|
72 |
+
raise ValueError("Minimum cutoff must be larger than zero.")
|
73 |
+
if cutoff > 0.5:
|
74 |
+
raise ValueError("A cutoff above 0.5 does not make sense.")
|
75 |
+
self.kernel_size = kernel_size
|
76 |
+
self.even = (kernel_size % 2 == 0)
|
77 |
+
self.pad_left = kernel_size // 2 - int(self.even)
|
78 |
+
self.pad_right = kernel_size // 2
|
79 |
+
self.stride = stride
|
80 |
+
self.padding = padding
|
81 |
+
self.padding_mode = padding_mode
|
82 |
+
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
|
83 |
+
self.register_buffer("filter", filter)
|
84 |
+
|
85 |
+
#input [B, C, T]
|
86 |
+
def forward(self, x):
|
87 |
+
_, C, _ = x.shape
|
88 |
+
|
89 |
+
if self.padding:
|
90 |
+
x = F.pad(x, (self.pad_left, self.pad_right),
|
91 |
+
mode=self.padding_mode)
|
92 |
+
out = F.conv1d(x, self.filter.expand(C, -1, -1),
|
93 |
+
stride=self.stride, groups=C)
|
94 |
+
|
95 |
+
return out
|
alias_free_torch/resample.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from .filter import LowPassFilter1d
|
7 |
+
from .filter import kaiser_sinc_filter1d
|
8 |
+
|
9 |
+
|
10 |
+
class UpSample1d(nn.Module):
|
11 |
+
def __init__(self, ratio=2, kernel_size=None):
|
12 |
+
super().__init__()
|
13 |
+
self.ratio = ratio
|
14 |
+
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
15 |
+
self.stride = ratio
|
16 |
+
self.pad = self.kernel_size // ratio - 1
|
17 |
+
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
|
18 |
+
self.pad_right = self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
|
19 |
+
filter = kaiser_sinc_filter1d(cutoff=0.5 / ratio,
|
20 |
+
half_width=0.6 / ratio,
|
21 |
+
kernel_size=self.kernel_size)
|
22 |
+
self.register_buffer("filter", filter)
|
23 |
+
|
24 |
+
# x: [B, C, T]
|
25 |
+
def forward(self, x):
|
26 |
+
_, C, _ = x.shape
|
27 |
+
|
28 |
+
x = F.pad(x, (self.pad, self.pad), mode='replicate')
|
29 |
+
x = self.ratio * F.conv_transpose1d(
|
30 |
+
x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
|
31 |
+
x = x[..., self.pad_left:-self.pad_right]
|
32 |
+
|
33 |
+
return x
|
34 |
+
|
35 |
+
|
36 |
+
class DownSample1d(nn.Module):
|
37 |
+
def __init__(self, ratio=2, kernel_size=None):
|
38 |
+
super().__init__()
|
39 |
+
self.ratio = ratio
|
40 |
+
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
41 |
+
self.lowpass = LowPassFilter1d(cutoff=0.5 / ratio,
|
42 |
+
half_width=0.6 / ratio,
|
43 |
+
stride=ratio,
|
44 |
+
kernel_size=self.kernel_size)
|
45 |
+
|
46 |
+
def forward(self, x):
|
47 |
+
xx = self.lowpass(x)
|
48 |
+
|
49 |
+
return xx
|
app.py
ADDED
@@ -0,0 +1,461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
from huggingface_hub import hf_hub_download
|
4 |
+
|
5 |
+
import json
|
6 |
+
import torch
|
7 |
+
import os
|
8 |
+
from env import AttrDict
|
9 |
+
from meldataset import mel_spectrogram, MAX_WAV_VALUE
|
10 |
+
from models import BigVGAN as Generator
|
11 |
+
import librosa
|
12 |
+
import numpy as np
|
13 |
+
from utils import plot_spectrogram, plot_spectrogram_clipped
|
14 |
+
import PIL
|
15 |
+
|
16 |
+
if torch.cuda.is_available():
|
17 |
+
device = torch.device('cuda')
|
18 |
+
torch.backends.cudnn.benchmark = False
|
19 |
+
print(f"using GPU")
|
20 |
+
else:
|
21 |
+
device = torch.device('cpu')
|
22 |
+
print(f"using CPU")
|
23 |
+
|
24 |
+
|
25 |
+
def load_checkpoint(filepath):
|
26 |
+
assert os.path.isfile(filepath)
|
27 |
+
print("Loading '{}'".format(filepath))
|
28 |
+
checkpoint_dict = torch.load(filepath, map_location='cpu')
|
29 |
+
print("Complete.")
|
30 |
+
return checkpoint_dict
|
31 |
+
|
32 |
+
|
33 |
+
def inference_gradio(input, model_choice): # input is audio waveform in [T, channel]
|
34 |
+
sr, audio = input # unpack input to sampling rate and audio itself
|
35 |
+
audio = np.transpose(audio) # transpose to [channel, T] for librosa
|
36 |
+
audio = audio / MAX_WAV_VALUE # convert int16 to float range used by BigVGAN
|
37 |
+
|
38 |
+
h = list_config[model_choice]
|
39 |
+
model = list_model[model_choice]
|
40 |
+
|
41 |
+
if sr != h.sampling_rate: # convert audio to model's sampling rate
|
42 |
+
audio = librosa.resample(audio, orig_sr=sr, target_sr=h.sampling_rate)
|
43 |
+
if len(audio.shape) == 2: # stereo
|
44 |
+
audio = librosa.to_mono(audio) # convert to mono if stereo
|
45 |
+
audio = librosa.util.normalize(audio) * 0.95
|
46 |
+
output, spec_gen = inference_model(audio, h, model) # output is generated audio in ndarray
|
47 |
+
|
48 |
+
spec_plot_gen = plot_spectrogram(spec_gen.numpy())
|
49 |
+
|
50 |
+
output_video = gr.make_waveform((h.sampling_rate, output))
|
51 |
+
output_image_gen = PIL.Image.frombytes('RGB',
|
52 |
+
spec_plot_gen.canvas.get_width_height(),
|
53 |
+
spec_plot_gen.canvas.tostring_rgb())
|
54 |
+
|
55 |
+
return output_video, output_image_gen
|
56 |
+
|
57 |
+
|
58 |
+
@spaces.GPU(duration=120)
|
59 |
+
def inference_model(audio_input, h, model):
|
60 |
+
model.to(device)
|
61 |
+
|
62 |
+
def get_mel(x):
|
63 |
+
return mel_spectrogram(x, h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax)
|
64 |
+
|
65 |
+
with torch.inference_mode():
|
66 |
+
wav = torch.FloatTensor(audio_input)
|
67 |
+
# compute mel spectrogram from the ground truth audio
|
68 |
+
spec_gt = get_mel(wav.unsqueeze(0)).to(device)
|
69 |
+
|
70 |
+
y_g_hat = model(spec_gt)
|
71 |
+
|
72 |
+
audio_gen = y_g_hat.squeeze()
|
73 |
+
spec_gen = get_mel(audio_gen.unsqueeze(0))
|
74 |
+
audio_gen = audio_gen * MAX_WAV_VALUE
|
75 |
+
audio_gen = audio_gen.cpu().numpy().astype('int16')
|
76 |
+
|
77 |
+
return audio_gen, spec_gen[0].cpu()
|
78 |
+
|
79 |
+
|
80 |
+
css = """
|
81 |
+
a {
|
82 |
+
color: inherit;
|
83 |
+
text-decoration: underline;
|
84 |
+
}
|
85 |
+
.gradio-container {
|
86 |
+
font-family: 'IBM Plex Sans', sans-serif;
|
87 |
+
}
|
88 |
+
.gr-button {
|
89 |
+
color: white;
|
90 |
+
border-color: #000000;
|
91 |
+
background: #000000;
|
92 |
+
}
|
93 |
+
input[type='range'] {
|
94 |
+
accent-color: #000000;
|
95 |
+
}
|
96 |
+
.dark input[type='range'] {
|
97 |
+
accent-color: #dfdfdf;
|
98 |
+
}
|
99 |
+
.container {
|
100 |
+
max-width: 730px;
|
101 |
+
margin: auto;
|
102 |
+
padding-top: 1.5rem;
|
103 |
+
}
|
104 |
+
#gallery {
|
105 |
+
min-height: 22rem;
|
106 |
+
margin-bottom: 15px;
|
107 |
+
margin-left: auto;
|
108 |
+
margin-right: auto;
|
109 |
+
border-bottom-right-radius: .5rem !important;
|
110 |
+
border-bottom-left-radius: .5rem !important;
|
111 |
+
}
|
112 |
+
#gallery>div>.h-full {
|
113 |
+
min-height: 20rem;
|
114 |
+
}
|
115 |
+
.details:hover {
|
116 |
+
text-decoration: underline;
|
117 |
+
}
|
118 |
+
.gr-button {
|
119 |
+
white-space: nowrap;
|
120 |
+
}
|
121 |
+
.gr-button:focus {
|
122 |
+
border-color: rgb(147 197 253 / var(--tw-border-opacity));
|
123 |
+
outline: none;
|
124 |
+
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
|
125 |
+
--tw-border-opacity: 1;
|
126 |
+
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
|
127 |
+
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
|
128 |
+
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
|
129 |
+
--tw-ring-opacity: .5;
|
130 |
+
}
|
131 |
+
#advanced-btn {
|
132 |
+
font-size: .7rem !important;
|
133 |
+
line-height: 19px;
|
134 |
+
margin-top: 12px;
|
135 |
+
margin-bottom: 12px;
|
136 |
+
padding: 2px 8px;
|
137 |
+
border-radius: 14px !important;
|
138 |
+
}
|
139 |
+
#advanced-options {
|
140 |
+
margin-bottom: 20px;
|
141 |
+
}
|
142 |
+
.footer {
|
143 |
+
margin-bottom: 45px;
|
144 |
+
margin-top: 35px;
|
145 |
+
text-align: center;
|
146 |
+
border-bottom: 1px solid #e5e5e5;
|
147 |
+
}
|
148 |
+
.footer>p {
|
149 |
+
font-size: .8rem;
|
150 |
+
display: inline-block;
|
151 |
+
padding: 0 10px;
|
152 |
+
transform: translateY(10px);
|
153 |
+
background: white;
|
154 |
+
}
|
155 |
+
.dark .footer {
|
156 |
+
border-color: #303030;
|
157 |
+
}
|
158 |
+
.dark .footer>p {
|
159 |
+
background: #0b0f19;
|
160 |
+
}
|
161 |
+
.acknowledgments h4{
|
162 |
+
margin: 1.25em 0 .25em 0;
|
163 |
+
font-weight: bold;
|
164 |
+
font-size: 115%;
|
165 |
+
}
|
166 |
+
#container-advanced-btns{
|
167 |
+
display: flex;
|
168 |
+
flex-wrap: wrap;
|
169 |
+
justify-content: space-between;
|
170 |
+
align-items: center;
|
171 |
+
}
|
172 |
+
.animate-spin {
|
173 |
+
animation: spin 1s linear infinite;
|
174 |
+
}
|
175 |
+
@keyframes spin {
|
176 |
+
from {
|
177 |
+
transform: rotate(0deg);
|
178 |
+
}
|
179 |
+
to {
|
180 |
+
transform: rotate(360deg);
|
181 |
+
}
|
182 |
+
}
|
183 |
+
#share-btn-container {
|
184 |
+
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
|
185 |
+
margin-top: 10px;
|
186 |
+
margin-left: auto;
|
187 |
+
}
|
188 |
+
#share-btn {
|
189 |
+
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0;
|
190 |
+
}
|
191 |
+
#share-btn * {
|
192 |
+
all: unset;
|
193 |
+
}
|
194 |
+
#share-btn-container div:nth-child(-n+2){
|
195 |
+
width: auto !important;
|
196 |
+
min-height: 0px !important;
|
197 |
+
}
|
198 |
+
#share-btn-container .wrap {
|
199 |
+
display: none !important;
|
200 |
+
}
|
201 |
+
.gr-form{
|
202 |
+
flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
|
203 |
+
}
|
204 |
+
#prompt-container{
|
205 |
+
gap: 0;
|
206 |
+
}
|
207 |
+
#generated_id{
|
208 |
+
min-height: 700px
|
209 |
+
}
|
210 |
+
#setting_id{
|
211 |
+
margin-bottom: 12px;
|
212 |
+
text-align: center;
|
213 |
+
font-weight: 900;
|
214 |
+
}
|
215 |
+
"""
|
216 |
+
|
217 |
+
######################## script for loading the models ########################
|
218 |
+
|
219 |
+
model_path = "L0SG/BigVGAN"
|
220 |
+
|
221 |
+
list_model_name = [
|
222 |
+
"bigvgan_24khz_100band",
|
223 |
+
"bigvgan_base_24khz_100band",
|
224 |
+
"bigvgan_22khz_80band",
|
225 |
+
"bigvgan_base_22khz_80band",
|
226 |
+
"bigvgan_v2_22khz_80band_256x",
|
227 |
+
"bigvgan_v2_22khz_80band_fmax8k_256x",
|
228 |
+
"bigvgan_v2_24khz_100band_256x",
|
229 |
+
"bigvgan_v2_44khz_128band_256x",
|
230 |
+
"bigvgan_v2_44khz_128band_512x"
|
231 |
+
]
|
232 |
+
|
233 |
+
model_files = {
|
234 |
+
"bigvgan_24khz_100band": "g_05000000",
|
235 |
+
"bigvgan_base_24khz_100band": "g_05000000",
|
236 |
+
"bigvgan_22khz_80band": "g_05000000",
|
237 |
+
"bigvgan_base_22khz_80band": "g_05000000",
|
238 |
+
"bigvgan_v2_22khz_80band_256x": "g_03000000",
|
239 |
+
"bigvgan_v2_22khz_80band_fmax8k_256x": "g_03000000",
|
240 |
+
"bigvgan_v2_24khz_100band_256x": "g_03000000",
|
241 |
+
"bigvgan_v2_44khz_128band_256x": "g_03000000",
|
242 |
+
"bigvgan_v2_44khz_128band_512x": "g_03000000"
|
243 |
+
}
|
244 |
+
|
245 |
+
list_model = []
|
246 |
+
list_config = []
|
247 |
+
|
248 |
+
for model_name in list_model_name:
|
249 |
+
model_file = hf_hub_download(model_path, f"{model_name}/{model_files[model_name]}")
|
250 |
+
config_file = hf_hub_download(model_path, f"{model_name}/config.json")
|
251 |
+
|
252 |
+
with open(config_file) as f:
|
253 |
+
data = f.read()
|
254 |
+
|
255 |
+
json_config = json.loads(data)
|
256 |
+
h = AttrDict(json_config)
|
257 |
+
|
258 |
+
torch.manual_seed(h.seed)
|
259 |
+
|
260 |
+
generator = Generator(h)
|
261 |
+
state_dict_g = load_checkpoint(model_file)
|
262 |
+
generator.load_state_dict(state_dict_g['generator'])
|
263 |
+
generator.eval()
|
264 |
+
generator.remove_weight_norm()
|
265 |
+
|
266 |
+
list_model.append(generator)
|
267 |
+
list_config.append(h)
|
268 |
+
|
269 |
+
######################## script for gradio UI ########################
|
270 |
+
|
271 |
+
iface = gr.Blocks(css=css)
|
272 |
+
|
273 |
+
with iface:
|
274 |
+
gr.HTML(
|
275 |
+
"""
|
276 |
+
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
|
277 |
+
<div
|
278 |
+
style="
|
279 |
+
display: inline-flex;
|
280 |
+
align-items: center;
|
281 |
+
gap: 0.8rem;
|
282 |
+
font-size: 1.75rem;
|
283 |
+
"
|
284 |
+
>
|
285 |
+
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
|
286 |
+
BigVGAN: A Universal Neural Vocoder with Large-Scale Training
|
287 |
+
</h1>
|
288 |
+
</div>
|
289 |
+
<p style="margin-bottom: 10px; font-size: 94%">
|
290 |
+
<a href="https://arxiv.org/abs/2206.04658">[Paper]</a> <a href="https://github.com/NVIDIA/BigVGAN">[Code]</a> <a href="https://bigvgan-demo.github.io/">[Demo]</a> <a href="https://research.nvidia.com/labs/adlr/projects/bigvgan/">[Project page]</a>
|
291 |
+
</p>
|
292 |
+
</div>
|
293 |
+
"""
|
294 |
+
)
|
295 |
+
gr.HTML(
|
296 |
+
"""
|
297 |
+
<div>
|
298 |
+
<h2>News</h2>
|
299 |
+
<p>[Jul 2024] We release BigVGAN-v2 along with pretrained checkpoints. Below are the highlights:</p>
|
300 |
+
<ul>
|
301 |
+
<li>Custom CUDA kernel for inference: we provide a fused upsampling + activation kernel written in CUDA for accelerated inference speed. Our test shows 1.5 - 3x faster speed on a single A100 GPU.</li>
|
302 |
+
<li>Improved discriminator and loss: BigVGAN-v2 is trained using a <a href="https://arxiv.org/abs/2311.14957" target="_blank">multi-scale sub-band CQT discriminator</a> and a <a href="https://arxiv.org/abs/2306.06546" target="_blank">multi-scale mel spectrogram loss</a>.</li>
|
303 |
+
<li>Larger training data: BigVGAN-v2 is trained using datasets containing diverse audio types, including speech in multiple languages, environmental sounds, and instruments.</li>
|
304 |
+
<li>We provide <a href="https://huggingface.co/L0SG/BigVGAN" target="_blank">pretrained checkpoints</a> of BigVGAN-v2 using diverse audio configurations, supporting up to 44 kHz sampling rate and 512x upsampling ratio.</li>
|
305 |
+
</ul>
|
306 |
+
</div>
|
307 |
+
"""
|
308 |
+
)
|
309 |
+
|
310 |
+
with gr.Group():
|
311 |
+
model_choice = gr.Radio(label="Select the model. Default: bigvgan_v2_24khz_100band_256x",
|
312 |
+
value="bigvgan_v2_24khz_100band_256x",
|
313 |
+
choices=[m for m in list_model_name],
|
314 |
+
type="index",
|
315 |
+
interactive=True)
|
316 |
+
audio_input = gr.Audio(label="Input Audio",
|
317 |
+
elem_id="input-audio",
|
318 |
+
interactive=True)
|
319 |
+
button = gr.Button("Submit")
|
320 |
+
output_video = gr.Video(label="Output Audio",
|
321 |
+
elem_id="output-video")
|
322 |
+
output_image_gen = gr.Image(label="Output Mel Spectrogram",
|
323 |
+
elem_id="output-image-gen")
|
324 |
+
button.click(inference_gradio,
|
325 |
+
inputs=[audio_input, model_choice],
|
326 |
+
outputs=[output_video, output_image_gen],
|
327 |
+
concurrency_limit=10
|
328 |
+
)
|
329 |
+
|
330 |
+
gr.Examples(
|
331 |
+
[
|
332 |
+
[os.path.join(os.path.dirname(__file__), "examples/jensen_24k.wav"), "bigvgan_v2_24khz_100band_256x"],
|
333 |
+
[os.path.join(os.path.dirname(__file__), "examples/libritts_24k.wav"), "bigvgan_v2_24khz_100band_256x"],
|
334 |
+
[os.path.join(os.path.dirname(__file__), "examples/queen_24k.wav"), "bigvgan_v2_24khz_100band_256x"],
|
335 |
+
[os.path.join(os.path.dirname(__file__), "examples/dance_24k.wav"), "bigvgan_v2_24khz_100band_256x"],
|
336 |
+
[os.path.join(os.path.dirname(__file__), "examples/megalovania_24k.wav"), "bigvgan_v2_24khz_100band_256x"],
|
337 |
+
[os.path.join(os.path.dirname(__file__), "examples/hifitts_44k.wav"), "bigvgan_v2_44khz_128band_256x"],
|
338 |
+
[os.path.join(os.path.dirname(__file__), "examples/musdbhq_44k.wav"), "bigvgan_v2_44khz_128band_256x"],
|
339 |
+
[os.path.join(os.path.dirname(__file__), "examples/musiccaps1_44k.wav"), "bigvgan_v2_44khz_128band_256x"],
|
340 |
+
[os.path.join(os.path.dirname(__file__), "examples/musiccaps2_44k.wav"), "bigvgan_v2_44khz_128band_256x"],
|
341 |
+
],
|
342 |
+
fn=inference_gradio,
|
343 |
+
inputs=[audio_input, model_choice],
|
344 |
+
outputs=[output_video, output_image_gen]
|
345 |
+
)
|
346 |
+
|
347 |
+
gr.HTML(
|
348 |
+
"""
|
349 |
+
<table border="1" cellspacing="0" cellpadding="5">
|
350 |
+
<thead>
|
351 |
+
<tr>
|
352 |
+
<th>Folder Name</th>
|
353 |
+
<th>Sampling Rate</th>
|
354 |
+
<th>Mel band</th>
|
355 |
+
<th>fmax</th>
|
356 |
+
<th>Upsampling Ratio</th>
|
357 |
+
<th>Params.</th>
|
358 |
+
<th>Dataset</th>
|
359 |
+
<th>Fine-Tuned</th>
|
360 |
+
</tr>
|
361 |
+
</thead>
|
362 |
+
<tbody>
|
363 |
+
<tr>
|
364 |
+
<td>bigvgan_v2_44khz_128band_512x</td>
|
365 |
+
<td>44 kHz</td>
|
366 |
+
<td>128</td>
|
367 |
+
<td>22050</td>
|
368 |
+
<td>512</td>
|
369 |
+
<td>122M</td>
|
370 |
+
<td>Large-scale Compilation</td>
|
371 |
+
<td>No</td>
|
372 |
+
</tr>
|
373 |
+
<tr>
|
374 |
+
<td>bigvgan_v2_44khz_128band_256x</td>
|
375 |
+
<td>44 kHz</td>
|
376 |
+
<td>128</td>
|
377 |
+
<td>22050</td>
|
378 |
+
<td>256</td>
|
379 |
+
<td>112M</td>
|
380 |
+
<td>Large-scale Compilation</td>
|
381 |
+
<td>No</td>
|
382 |
+
</tr>
|
383 |
+
<tr>
|
384 |
+
<td>bigvgan_v2_24khz_100band_256x</td>
|
385 |
+
<td>24 kHz</td>
|
386 |
+
<td>100</td>
|
387 |
+
<td>12000</td>
|
388 |
+
<td>256</td>
|
389 |
+
<td>112M</td>
|
390 |
+
<td>Large-scale Compilation</td>
|
391 |
+
<td>No</td>
|
392 |
+
</tr>
|
393 |
+
<tr>
|
394 |
+
<td>bigvgan_v2_22khz_80band_256x</td>
|
395 |
+
<td>22 kHz</td>
|
396 |
+
<td>80</td>
|
397 |
+
<td>11025</td>
|
398 |
+
<td>256</td>
|
399 |
+
<td>112M</td>
|
400 |
+
<td>Large-scale Compilation</td>
|
401 |
+
<td>No</td>
|
402 |
+
</tr>
|
403 |
+
<tr>
|
404 |
+
<td>bigvgan_v2_22khz_80band_fmax8k_256x</td>
|
405 |
+
<td>22 kHz</td>
|
406 |
+
<td>80</td>
|
407 |
+
<td>8000</td>
|
408 |
+
<td>256</td>
|
409 |
+
<td>112M</td>
|
410 |
+
<td>Large-scale Compilation</td>
|
411 |
+
<td>No</td>
|
412 |
+
</tr>
|
413 |
+
<tr>
|
414 |
+
<td>bigvgan_24khz_100band</td>
|
415 |
+
<td>24 kHz</td>
|
416 |
+
<td>100</td>
|
417 |
+
<td>12000</td>
|
418 |
+
<td>256</td>
|
419 |
+
<td>112M</td>
|
420 |
+
<td>LibriTTS</td>
|
421 |
+
<td>No</td>
|
422 |
+
</tr>
|
423 |
+
<tr>
|
424 |
+
<td>bigvgan_base_24khz_100band</td>
|
425 |
+
<td>24 kHz</td>
|
426 |
+
<td>100</td>
|
427 |
+
<td>12000</td>
|
428 |
+
<td>256</td>
|
429 |
+
<td>14M</td>
|
430 |
+
<td>LibriTTS</td>
|
431 |
+
<td>No</td>
|
432 |
+
</tr>
|
433 |
+
<tr>
|
434 |
+
<td>bigvgan_22khz_80band</td>
|
435 |
+
<td>22 kHz</td>
|
436 |
+
<td>80</td>
|
437 |
+
<td>8000</td>
|
438 |
+
<td>256</td>
|
439 |
+
<td>112M</td>
|
440 |
+
<td>LibriTTS + VCTK + LJSpeech</td>
|
441 |
+
<td>No</td>
|
442 |
+
</tr>
|
443 |
+
<tr>
|
444 |
+
<td>bigvgan_base_22khz_80band</td>
|
445 |
+
<td>22 kHz</td>
|
446 |
+
<td>80</td>
|
447 |
+
<td>8000</td>
|
448 |
+
<td>256</td>
|
449 |
+
<td>14M</td>
|
450 |
+
<td>LibriTTS + VCTK + LJSpeech</td>
|
451 |
+
<td>No</td>
|
452 |
+
</tr>
|
453 |
+
</tbody>
|
454 |
+
</table>
|
455 |
+
<p><b>NOTE: The v1 models are trained using speech audio datasets ONLY! (24kHz models: LibriTTS, 22kHz models: LibriTTS + VCTK + LJSpeech).</b></p>
|
456 |
+
</div>
|
457 |
+
"""
|
458 |
+
)
|
459 |
+
|
460 |
+
iface.queue()
|
461 |
+
iface.launch()
|
env.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import os
|
5 |
+
import shutil
|
6 |
+
|
7 |
+
|
8 |
+
class AttrDict(dict):
|
9 |
+
def __init__(self, *args, **kwargs):
|
10 |
+
super(AttrDict, self).__init__(*args, **kwargs)
|
11 |
+
self.__dict__ = self
|
12 |
+
|
13 |
+
|
14 |
+
def build_env(config, config_name, path):
|
15 |
+
t_path = os.path.join(path, config_name)
|
16 |
+
if config != t_path:
|
17 |
+
os.makedirs(path, exist_ok=True)
|
18 |
+
shutil.copyfile(config, os.path.join(path, config_name))
|
examples/dance_24k.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7068d78ce4d008a793f6bfbbe49d0f8962a752f07780833c5ab73652da9849fd
|
3 |
+
size 479788
|
examples/hifitts_44k.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01f7653b188bdb7349542bbc8af473208d463639682b684527cef651d8225483
|
3 |
+
size 570024
|
examples/jensen_24k.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ec26c78377e056ba8f08e0c337cc535c0fe08a9d0e7923ef3f5c52369173713
|
3 |
+
size 479788
|
examples/libritts_24k.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e9259975995438846da86fd69f0263a1ef859a6e5a4c4501b7c71bca52d5acc
|
3 |
+
size 281644
|
examples/megalovania_24k.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7970ac637e680876d48ad84e9185db1b21da01929fe46d855e8794bd83d14c20
|
3 |
+
size 1548328
|
examples/musdbhq_44k.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87dbdabc47550f493c2c0e2c9389b6dddffb93977408b54d9c4db3b5f071856c
|
3 |
+
size 917548
|
examples/musiccaps1_44k.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d433e0be92a742e9fd2c6a38d627e8cf8864c78ba76f334bd99ec9d931fb615f
|
3 |
+
size 887062
|
examples/musiccaps2_44k.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fafab98d1d31866e432c6b5cfd67e19278ce5a37547781c30c5638136cbab04
|
3 |
+
size 887062
|
examples/queen_24k.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee9fcaf8d21b098f94541b6f2dfc0803167b39f2aea0ca5c40d0b7430b3954d8
|
3 |
+
size 479788
|
incl_licenses/LICENSE_1
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2020 Jungil Kong
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
incl_licenses/LICENSE_2
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2020 Edward Dixon
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
incl_licenses/LICENSE_3
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
incl_licenses/LICENSE_4
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
BSD 3-Clause License
|
2 |
+
|
3 |
+
Copyright (c) 2019, Seungwon Park 박승원
|
4 |
+
All rights reserved.
|
5 |
+
|
6 |
+
Redistribution and use in source and binary forms, with or without
|
7 |
+
modification, are permitted provided that the following conditions are met:
|
8 |
+
|
9 |
+
1. Redistributions of source code must retain the above copyright notice, this
|
10 |
+
list of conditions and the following disclaimer.
|
11 |
+
|
12 |
+
2. Redistributions in binary form must reproduce the above copyright notice,
|
13 |
+
this list of conditions and the following disclaimer in the documentation
|
14 |
+
and/or other materials provided with the distribution.
|
15 |
+
|
16 |
+
3. Neither the name of the copyright holder nor the names of its
|
17 |
+
contributors may be used to endorse or promote products derived from
|
18 |
+
this software without specific prior written permission.
|
19 |
+
|
20 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
21 |
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
22 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
23 |
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
24 |
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
25 |
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
26 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
27 |
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
28 |
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
29 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
incl_licenses/LICENSE_5
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright 2020 Alexandre Défossez
|
2 |
+
|
3 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
|
4 |
+
associated documentation files (the "Software"), to deal in the Software without restriction,
|
5 |
+
including without limitation the rights to use, copy, modify, merge, publish, distribute,
|
6 |
+
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
|
7 |
+
furnished to do so, subject to the following conditions:
|
8 |
+
|
9 |
+
The above copyright notice and this permission notice shall be included in all copies or
|
10 |
+
substantial portions of the Software.
|
11 |
+
|
12 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
|
13 |
+
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
14 |
+
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
15 |
+
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
16 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
incl_licenses/LICENSE_6
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023-present, Descript
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
incl_licenses/LICENSE_7
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023 Charactr Inc.
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
incl_licenses/LICENSE_8
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023 Amphion
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
inference.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
from __future__ import absolute_import, division, print_function, unicode_literals
|
5 |
+
|
6 |
+
import glob
|
7 |
+
import os
|
8 |
+
import argparse
|
9 |
+
import json
|
10 |
+
import torch
|
11 |
+
from scipy.io.wavfile import write
|
12 |
+
from env import AttrDict
|
13 |
+
from meldataset import mel_spectrogram, MAX_WAV_VALUE
|
14 |
+
from models import BigVGAN as Generator
|
15 |
+
import librosa
|
16 |
+
|
17 |
+
h = None
|
18 |
+
device = None
|
19 |
+
torch.backends.cudnn.benchmark = False
|
20 |
+
|
21 |
+
|
22 |
+
def load_checkpoint(filepath, device):
|
23 |
+
assert os.path.isfile(filepath)
|
24 |
+
print("Loading '{}'".format(filepath))
|
25 |
+
checkpoint_dict = torch.load(filepath, map_location=device)
|
26 |
+
print("Complete.")
|
27 |
+
return checkpoint_dict
|
28 |
+
|
29 |
+
|
30 |
+
def get_mel(x):
|
31 |
+
return mel_spectrogram(x, h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax)
|
32 |
+
|
33 |
+
|
34 |
+
def scan_checkpoint(cp_dir, prefix):
|
35 |
+
pattern = os.path.join(cp_dir, prefix + '*')
|
36 |
+
cp_list = glob.glob(pattern)
|
37 |
+
if len(cp_list) == 0:
|
38 |
+
return ''
|
39 |
+
return sorted(cp_list)[-1]
|
40 |
+
|
41 |
+
|
42 |
+
def inference(a, h):
|
43 |
+
generator = Generator(h, use_cuda_kernel=a.use_cuda_kernel).to(device)
|
44 |
+
|
45 |
+
state_dict_g = load_checkpoint(a.checkpoint_file, device)
|
46 |
+
generator.load_state_dict(state_dict_g['generator'])
|
47 |
+
|
48 |
+
filelist = os.listdir(a.input_wavs_dir)
|
49 |
+
|
50 |
+
os.makedirs(a.output_dir, exist_ok=True)
|
51 |
+
|
52 |
+
generator.eval()
|
53 |
+
generator.remove_weight_norm()
|
54 |
+
with torch.no_grad():
|
55 |
+
for i, filname in enumerate(filelist):
|
56 |
+
# load the ground truth audio and resample if necessary
|
57 |
+
wav, sr = librosa.load(os.path.join(a.input_wavs_dir, filname), sr=h.sampling_rate, mono=True)
|
58 |
+
wav = torch.FloatTensor(wav).to(device)
|
59 |
+
# compute mel spectrogram from the ground truth audio
|
60 |
+
x = get_mel(wav.unsqueeze(0))
|
61 |
+
|
62 |
+
y_g_hat = generator(x)
|
63 |
+
|
64 |
+
audio = y_g_hat.squeeze()
|
65 |
+
audio = audio * MAX_WAV_VALUE
|
66 |
+
audio = audio.cpu().numpy().astype('int16')
|
67 |
+
|
68 |
+
output_file = os.path.join(a.output_dir, os.path.splitext(filname)[0] + '_generated.wav')
|
69 |
+
write(output_file, h.sampling_rate, audio)
|
70 |
+
print(output_file)
|
71 |
+
|
72 |
+
|
73 |
+
def main():
|
74 |
+
print('Initializing Inference Process..')
|
75 |
+
|
76 |
+
parser = argparse.ArgumentParser()
|
77 |
+
parser.add_argument('--input_wavs_dir', default='test_files')
|
78 |
+
parser.add_argument('--output_dir', default='generated_files')
|
79 |
+
parser.add_argument('--checkpoint_file', required=True)
|
80 |
+
parser.add_argument('--use_cuda_kernel', action='store_true', default=False)
|
81 |
+
|
82 |
+
a = parser.parse_args()
|
83 |
+
|
84 |
+
config_file = os.path.join(os.path.split(a.checkpoint_file)[0], 'config.json')
|
85 |
+
with open(config_file) as f:
|
86 |
+
data = f.read()
|
87 |
+
|
88 |
+
global h
|
89 |
+
json_config = json.loads(data)
|
90 |
+
h = AttrDict(json_config)
|
91 |
+
|
92 |
+
torch.manual_seed(h.seed)
|
93 |
+
global device
|
94 |
+
if torch.cuda.is_available():
|
95 |
+
torch.cuda.manual_seed(h.seed)
|
96 |
+
device = torch.device('cuda')
|
97 |
+
else:
|
98 |
+
device = torch.device('cpu')
|
99 |
+
|
100 |
+
inference(a, h)
|
101 |
+
|
102 |
+
|
103 |
+
if __name__ == '__main__':
|
104 |
+
main()
|
105 |
+
|
meldataset.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
import math
|
8 |
+
import os
|
9 |
+
import random
|
10 |
+
import torch
|
11 |
+
import torch.utils.data
|
12 |
+
import numpy as np
|
13 |
+
from librosa.util import normalize
|
14 |
+
from scipy.io.wavfile import read
|
15 |
+
from librosa.filters import mel as librosa_mel_fn
|
16 |
+
import pathlib
|
17 |
+
from tqdm import tqdm
|
18 |
+
|
19 |
+
MAX_WAV_VALUE = 32767.0 # NOTE: 32768.0 -1 to prevent int16 overflow (results in popping sound in corner cases)
|
20 |
+
|
21 |
+
|
22 |
+
def load_wav(full_path, sr_target):
|
23 |
+
sampling_rate, data = read(full_path)
|
24 |
+
if sampling_rate != sr_target:
|
25 |
+
raise RuntimeError("Sampling rate of the file {} is {} Hz, but the model requires {} Hz".
|
26 |
+
format(full_path, sampling_rate, sr_target))
|
27 |
+
return data, sampling_rate
|
28 |
+
|
29 |
+
|
30 |
+
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
31 |
+
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
32 |
+
|
33 |
+
|
34 |
+
def dynamic_range_decompression(x, C=1):
|
35 |
+
return np.exp(x) / C
|
36 |
+
|
37 |
+
|
38 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
39 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
40 |
+
|
41 |
+
|
42 |
+
def dynamic_range_decompression_torch(x, C=1):
|
43 |
+
return torch.exp(x) / C
|
44 |
+
|
45 |
+
|
46 |
+
def spectral_normalize_torch(magnitudes):
|
47 |
+
output = dynamic_range_compression_torch(magnitudes)
|
48 |
+
return output
|
49 |
+
|
50 |
+
|
51 |
+
def spectral_de_normalize_torch(magnitudes):
|
52 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
53 |
+
return output
|
54 |
+
|
55 |
+
|
56 |
+
mel_basis = {}
|
57 |
+
hann_window = {}
|
58 |
+
|
59 |
+
|
60 |
+
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
61 |
+
if torch.min(y) < -1.:
|
62 |
+
print('min value is ', torch.min(y))
|
63 |
+
if torch.max(y) > 1.:
|
64 |
+
print('max value is ', torch.max(y))
|
65 |
+
|
66 |
+
global mel_basis, hann_window
|
67 |
+
if fmax not in mel_basis:
|
68 |
+
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
69 |
+
str_key_mel_basis = str(fmax)+'_'+str(y.device)
|
70 |
+
mel_basis[str_key_mel_basis] = torch.from_numpy(mel).float().to(y.device)
|
71 |
+
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
|
72 |
+
|
73 |
+
y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
|
74 |
+
y = y.squeeze(1)
|
75 |
+
|
76 |
+
# complex tensor as default, then use view_as_real for future pytorch compatibility
|
77 |
+
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)],
|
78 |
+
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True)
|
79 |
+
spec = torch.view_as_real(spec)
|
80 |
+
spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9))
|
81 |
+
|
82 |
+
spec = torch.matmul(mel_basis[str_key_mel_basis], spec)
|
83 |
+
spec = spectral_normalize_torch(spec)
|
84 |
+
|
85 |
+
return spec
|
86 |
+
|
87 |
+
|
88 |
+
def get_dataset_filelist(a):
|
89 |
+
with open(a.input_training_file, 'r', encoding='utf-8') as fi:
|
90 |
+
training_files = [os.path.join(a.input_wavs_dir, x.split('|')[0] + '.wav')
|
91 |
+
for x in fi.read().split('\n') if len(x) > 0]
|
92 |
+
print("first training file: {}".format(training_files[0]))
|
93 |
+
|
94 |
+
with open(a.input_validation_file, 'r', encoding='utf-8') as fi:
|
95 |
+
validation_files = [os.path.join(a.input_wavs_dir, x.split('|')[0] + '.wav')
|
96 |
+
for x in fi.read().split('\n') if len(x) > 0]
|
97 |
+
print("first validation file: {}".format(validation_files[0]))
|
98 |
+
|
99 |
+
list_unseen_validation_files = []
|
100 |
+
for i in range(len(a.list_input_unseen_validation_file)):
|
101 |
+
with open(a.list_input_unseen_validation_file[i], 'r', encoding='utf-8') as fi:
|
102 |
+
unseen_validation_files = [os.path.join(a.list_input_unseen_wavs_dir[i], x.split('|')[0] + '.wav')
|
103 |
+
for x in fi.read().split('\n') if len(x) > 0]
|
104 |
+
print("first unseen {}th validation fileset: {}".format(i, unseen_validation_files[0]))
|
105 |
+
list_unseen_validation_files.append(unseen_validation_files)
|
106 |
+
|
107 |
+
return training_files, validation_files, list_unseen_validation_files
|
108 |
+
|
109 |
+
|
110 |
+
class MelDataset(torch.utils.data.Dataset):
|
111 |
+
def __init__(self, training_files, hparams, segment_size, n_fft, num_mels,
|
112 |
+
hop_size, win_size, sampling_rate, fmin, fmax, split=True, shuffle=True, n_cache_reuse=1,
|
113 |
+
device=None, fmax_loss=None, fine_tuning=False, base_mels_path=None, is_seen=True):
|
114 |
+
self.audio_files = training_files
|
115 |
+
random.seed(1234)
|
116 |
+
if shuffle:
|
117 |
+
random.shuffle(self.audio_files)
|
118 |
+
self.hparams = hparams
|
119 |
+
self.is_seen = is_seen
|
120 |
+
if self.is_seen:
|
121 |
+
self.name = pathlib.Path(self.audio_files[0]).parts[0]
|
122 |
+
else:
|
123 |
+
self.name = '-'.join(pathlib.Path(self.audio_files[0]).parts[:2]).strip("/")
|
124 |
+
|
125 |
+
self.segment_size = segment_size
|
126 |
+
self.sampling_rate = sampling_rate
|
127 |
+
self.split = split
|
128 |
+
self.n_fft = n_fft
|
129 |
+
self.num_mels = num_mels
|
130 |
+
self.hop_size = hop_size
|
131 |
+
self.win_size = win_size
|
132 |
+
self.fmin = fmin
|
133 |
+
self.fmax = fmax
|
134 |
+
self.fmax_loss = fmax_loss
|
135 |
+
self.cached_wav = None
|
136 |
+
self.n_cache_reuse = n_cache_reuse
|
137 |
+
self._cache_ref_count = 0
|
138 |
+
self.device = device
|
139 |
+
self.fine_tuning = fine_tuning
|
140 |
+
self.base_mels_path = base_mels_path
|
141 |
+
|
142 |
+
print("INFO: checking dataset integrity...")
|
143 |
+
for i in tqdm(range(len(self.audio_files))):
|
144 |
+
assert os.path.exists(self.audio_files[i]), "{} not found".format(self.audio_files[i])
|
145 |
+
|
146 |
+
def __getitem__(self, index):
|
147 |
+
|
148 |
+
filename = self.audio_files[index]
|
149 |
+
if self._cache_ref_count == 0:
|
150 |
+
audio, sampling_rate = load_wav(filename, self.sampling_rate)
|
151 |
+
audio = audio / MAX_WAV_VALUE
|
152 |
+
if not self.fine_tuning:
|
153 |
+
audio = normalize(audio) * 0.95
|
154 |
+
self.cached_wav = audio
|
155 |
+
if sampling_rate != self.sampling_rate:
|
156 |
+
raise ValueError("{} SR doesn't match target {} SR".format(
|
157 |
+
sampling_rate, self.sampling_rate))
|
158 |
+
self._cache_ref_count = self.n_cache_reuse
|
159 |
+
else:
|
160 |
+
audio = self.cached_wav
|
161 |
+
self._cache_ref_count -= 1
|
162 |
+
|
163 |
+
audio = torch.FloatTensor(audio)
|
164 |
+
audio = audio.unsqueeze(0)
|
165 |
+
|
166 |
+
if not self.fine_tuning:
|
167 |
+
if self.split:
|
168 |
+
if audio.size(1) >= self.segment_size:
|
169 |
+
max_audio_start = audio.size(1) - self.segment_size
|
170 |
+
audio_start = random.randint(0, max_audio_start)
|
171 |
+
audio = audio[:, audio_start:audio_start+self.segment_size]
|
172 |
+
else:
|
173 |
+
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant')
|
174 |
+
|
175 |
+
mel = mel_spectrogram(audio, self.n_fft, self.num_mels,
|
176 |
+
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax,
|
177 |
+
center=False)
|
178 |
+
else: # validation step
|
179 |
+
# match audio length to self.hop_size * n for evaluation
|
180 |
+
if (audio.size(1) % self.hop_size) != 0:
|
181 |
+
audio = audio[:, :-(audio.size(1) % self.hop_size)]
|
182 |
+
mel = mel_spectrogram(audio, self.n_fft, self.num_mels,
|
183 |
+
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax,
|
184 |
+
center=False)
|
185 |
+
assert audio.shape[1] == mel.shape[2] * self.hop_size, "audio shape {} mel shape {}".format(audio.shape, mel.shape)
|
186 |
+
|
187 |
+
else:
|
188 |
+
mel = np.load(
|
189 |
+
os.path.join(self.base_mels_path, os.path.splitext(os.path.split(filename)[-1])[0] + '.npy'))
|
190 |
+
mel = torch.from_numpy(mel)
|
191 |
+
|
192 |
+
if len(mel.shape) < 3:
|
193 |
+
mel = mel.unsqueeze(0)
|
194 |
+
|
195 |
+
if self.split:
|
196 |
+
frames_per_seg = math.ceil(self.segment_size / self.hop_size)
|
197 |
+
|
198 |
+
if audio.size(1) >= self.segment_size:
|
199 |
+
mel_start = random.randint(0, mel.size(2) - frames_per_seg - 1)
|
200 |
+
mel = mel[:, :, mel_start:mel_start + frames_per_seg]
|
201 |
+
audio = audio[:, mel_start * self.hop_size:(mel_start + frames_per_seg) * self.hop_size]
|
202 |
+
else:
|
203 |
+
mel = torch.nn.functional.pad(mel, (0, frames_per_seg - mel.size(2)), 'constant')
|
204 |
+
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant')
|
205 |
+
|
206 |
+
mel_loss = mel_spectrogram(audio, self.n_fft, self.num_mels,
|
207 |
+
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax_loss,
|
208 |
+
center=False)
|
209 |
+
|
210 |
+
return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze())
|
211 |
+
|
212 |
+
def __len__(self):
|
213 |
+
return len(self.audio_files)
|
models.py
ADDED
@@ -0,0 +1,955 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torch.nn as nn
|
11 |
+
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
12 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
13 |
+
from torchaudio.transforms import Spectrogram, Resample
|
14 |
+
from librosa.filters import mel as librosa_mel_fn
|
15 |
+
from scipy import signal
|
16 |
+
|
17 |
+
import activations
|
18 |
+
from utils import init_weights, get_padding
|
19 |
+
from alias_free_torch.act import Activation1d as TorchActivation1d
|
20 |
+
import typing
|
21 |
+
from typing import List, Optional, Tuple
|
22 |
+
from collections import namedtuple
|
23 |
+
import math
|
24 |
+
import functools
|
25 |
+
|
26 |
+
|
27 |
+
class AMPBlock1(torch.nn.Module):
|
28 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None):
|
29 |
+
super(AMPBlock1, self).__init__()
|
30 |
+
self.h = h
|
31 |
+
|
32 |
+
self.convs1 = nn.ModuleList([
|
33 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
34 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
35 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
36 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
37 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
38 |
+
padding=get_padding(kernel_size, dilation[2])))
|
39 |
+
])
|
40 |
+
self.convs1.apply(init_weights)
|
41 |
+
|
42 |
+
self.convs2 = nn.ModuleList([
|
43 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
44 |
+
padding=get_padding(kernel_size, 1))),
|
45 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
46 |
+
padding=get_padding(kernel_size, 1))),
|
47 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
48 |
+
padding=get_padding(kernel_size, 1)))
|
49 |
+
])
|
50 |
+
self.convs2.apply(init_weights)
|
51 |
+
|
52 |
+
self.num_layers = len(self.convs1) + len(self.convs2) # total number of conv layers
|
53 |
+
|
54 |
+
# select which Activation1d, lazy-load cuda version to ensure backward compatibility
|
55 |
+
if self.h.get("use_cuda_kernel", False):
|
56 |
+
# faster CUDA kernel implementation of Activation1d
|
57 |
+
from alias_free_cuda.activation1d import Activation1d as CudaActivation1d
|
58 |
+
Activation1d = CudaActivation1d
|
59 |
+
else:
|
60 |
+
Activation1d = TorchActivation1d
|
61 |
+
|
62 |
+
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
|
63 |
+
self.activations = nn.ModuleList([
|
64 |
+
Activation1d(
|
65 |
+
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
|
66 |
+
for _ in range(self.num_layers)
|
67 |
+
])
|
68 |
+
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
|
69 |
+
self.activations = nn.ModuleList([
|
70 |
+
Activation1d(
|
71 |
+
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
|
72 |
+
for _ in range(self.num_layers)
|
73 |
+
])
|
74 |
+
else:
|
75 |
+
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
|
76 |
+
|
77 |
+
def forward(self, x):
|
78 |
+
acts1, acts2 = self.activations[::2], self.activations[1::2]
|
79 |
+
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
|
80 |
+
xt = a1(x)
|
81 |
+
xt = c1(xt)
|
82 |
+
xt = a2(xt)
|
83 |
+
xt = c2(xt)
|
84 |
+
x = xt + x
|
85 |
+
|
86 |
+
return x
|
87 |
+
|
88 |
+
def remove_weight_norm(self):
|
89 |
+
for l in self.convs1:
|
90 |
+
remove_weight_norm(l)
|
91 |
+
for l in self.convs2:
|
92 |
+
remove_weight_norm(l)
|
93 |
+
|
94 |
+
|
95 |
+
class AMPBlock2(torch.nn.Module):
|
96 |
+
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None):
|
97 |
+
super(AMPBlock2, self).__init__()
|
98 |
+
self.h = h
|
99 |
+
|
100 |
+
self.convs = nn.ModuleList([
|
101 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
102 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
103 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
104 |
+
padding=get_padding(kernel_size, dilation[1])))
|
105 |
+
])
|
106 |
+
self.convs.apply(init_weights)
|
107 |
+
|
108 |
+
self.num_layers = len(self.convs) # total number of conv layers
|
109 |
+
|
110 |
+
# select which Activation1d, lazy-load cuda version to ensure backward compatibility
|
111 |
+
if self.h.get("use_cuda_kernel", False):
|
112 |
+
# faster CUDA kernel implementation of Activation1d
|
113 |
+
from alias_free_cuda.activation1d import Activation1d as CudaActivation1d
|
114 |
+
Activation1d = CudaActivation1d
|
115 |
+
else:
|
116 |
+
Activation1d = TorchActivation1d
|
117 |
+
|
118 |
+
if activation == 'snake': # periodic nonlinearity with snake function and anti-aliasing
|
119 |
+
self.activations = nn.ModuleList([
|
120 |
+
Activation1d(
|
121 |
+
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
|
122 |
+
for _ in range(self.num_layers)
|
123 |
+
])
|
124 |
+
elif activation == 'snakebeta': # periodic nonlinearity with snakebeta function and anti-aliasing
|
125 |
+
self.activations = nn.ModuleList([
|
126 |
+
Activation1d(
|
127 |
+
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
|
128 |
+
for _ in range(self.num_layers)
|
129 |
+
])
|
130 |
+
else:
|
131 |
+
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
|
132 |
+
|
133 |
+
def forward(self, x):
|
134 |
+
for c, a in zip (self.convs, self.activations):
|
135 |
+
xt = a(x)
|
136 |
+
xt = c(xt)
|
137 |
+
x = xt + x
|
138 |
+
|
139 |
+
return x
|
140 |
+
|
141 |
+
def remove_weight_norm(self):
|
142 |
+
for l in self.convs:
|
143 |
+
remove_weight_norm(l)
|
144 |
+
|
145 |
+
|
146 |
+
class BigVGAN(torch.nn.Module):
|
147 |
+
# this is our main BigVGAN model. Applies anti-aliased periodic activation for resblocks.
|
148 |
+
# New in v2: if use_cuda_kernel is set to True, it loads optimized CUDA kernels for AMP.
|
149 |
+
# NOTE: use_cuda_kernel=True should be used for inference only (training is not supported).
|
150 |
+
def __init__(
|
151 |
+
self,
|
152 |
+
h,
|
153 |
+
use_cuda_kernel: bool=False
|
154 |
+
):
|
155 |
+
super(BigVGAN, self).__init__()
|
156 |
+
self.h = h
|
157 |
+
self.h["use_cuda_kernel"] = use_cuda_kernel # add it to global hyperparameters (h)
|
158 |
+
|
159 |
+
self.num_kernels = len(h.resblock_kernel_sizes)
|
160 |
+
self.num_upsamples = len(h.upsample_rates)
|
161 |
+
|
162 |
+
# pre conv
|
163 |
+
self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3))
|
164 |
+
|
165 |
+
# define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
|
166 |
+
resblock = AMPBlock1 if h.resblock == '1' else AMPBlock2
|
167 |
+
|
168 |
+
# transposed conv-based upsamplers. does not apply anti-aliasing
|
169 |
+
self.ups = nn.ModuleList()
|
170 |
+
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
171 |
+
self.ups.append(nn.ModuleList([
|
172 |
+
weight_norm(ConvTranspose1d(h.upsample_initial_channel // (2 ** i),
|
173 |
+
h.upsample_initial_channel // (2 ** (i + 1)),
|
174 |
+
k, u, padding=(k - u) // 2))
|
175 |
+
]))
|
176 |
+
|
177 |
+
# residual blocks using anti-aliased multi-periodicity composition modules (AMP)
|
178 |
+
self.resblocks = nn.ModuleList()
|
179 |
+
for i in range(len(self.ups)):
|
180 |
+
ch = h.upsample_initial_channel // (2 ** (i + 1))
|
181 |
+
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
|
182 |
+
self.resblocks.append(resblock(h, ch, k, d, activation=h.activation))
|
183 |
+
|
184 |
+
# select which Activation1d, lazy-load cuda version to ensure backward compatibility
|
185 |
+
if self.h.get("use_cuda_kernel", False):
|
186 |
+
# faster CUDA kernel implementation of Activation1d
|
187 |
+
from alias_free_cuda.activation1d import Activation1d as CudaActivation1d
|
188 |
+
Activation1d = CudaActivation1d
|
189 |
+
else:
|
190 |
+
Activation1d = TorchActivation1d
|
191 |
+
|
192 |
+
# post conv
|
193 |
+
if h.activation == "snake": # periodic nonlinearity with snake function and anti-aliasing
|
194 |
+
activation_post = activations.Snake(ch, alpha_logscale=h.snake_logscale)
|
195 |
+
self.activation_post = Activation1d(activation=activation_post)
|
196 |
+
elif h.activation == "snakebeta": # periodic nonlinearity with snakebeta function and anti-aliasing
|
197 |
+
activation_post = activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale)
|
198 |
+
self.activation_post = Activation1d(activation=activation_post)
|
199 |
+
else:
|
200 |
+
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.")
|
201 |
+
|
202 |
+
# whether to use bias for the final conv_post. Defaults to True for backward compatibility
|
203 |
+
self.use_bias_at_final = h.get("use_bias_at_final", True)
|
204 |
+
self.conv_post = weight_norm(Conv1d(
|
205 |
+
ch, 1, 7, 1, padding=3, bias=self.use_bias_at_final
|
206 |
+
))
|
207 |
+
|
208 |
+
# weight initialization
|
209 |
+
for i in range(len(self.ups)):
|
210 |
+
self.ups[i].apply(init_weights)
|
211 |
+
self.conv_post.apply(init_weights)
|
212 |
+
|
213 |
+
# final tanh activation. Defaults to True for backward compatibility
|
214 |
+
self.use_tanh_at_final = h.get("use_tanh_at_final", True)
|
215 |
+
|
216 |
+
def forward(self, x):
|
217 |
+
# pre conv
|
218 |
+
x = self.conv_pre(x)
|
219 |
+
|
220 |
+
for i in range(self.num_upsamples):
|
221 |
+
# upsampling
|
222 |
+
for i_up in range(len(self.ups[i])):
|
223 |
+
x = self.ups[i][i_up](x)
|
224 |
+
# AMP blocks
|
225 |
+
xs = None
|
226 |
+
for j in range(self.num_kernels):
|
227 |
+
if xs is None:
|
228 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
229 |
+
else:
|
230 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
231 |
+
x = xs / self.num_kernels
|
232 |
+
|
233 |
+
# post conv
|
234 |
+
x = self.activation_post(x)
|
235 |
+
x = self.conv_post(x)
|
236 |
+
# final tanh activation
|
237 |
+
if self.use_tanh_at_final:
|
238 |
+
x = torch.tanh(x)
|
239 |
+
else:
|
240 |
+
x = torch.clamp(x, min=-1., max=1.) # bound the output to [-1, 1]
|
241 |
+
|
242 |
+
return x
|
243 |
+
|
244 |
+
def remove_weight_norm(self):
|
245 |
+
print('Removing weight norm...')
|
246 |
+
for l in self.ups:
|
247 |
+
for l_i in l:
|
248 |
+
remove_weight_norm(l_i)
|
249 |
+
for l in self.resblocks:
|
250 |
+
l.remove_weight_norm()
|
251 |
+
remove_weight_norm(self.conv_pre)
|
252 |
+
remove_weight_norm(self.conv_post)
|
253 |
+
|
254 |
+
|
255 |
+
class DiscriminatorP(torch.nn.Module):
|
256 |
+
def __init__(self, h, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
257 |
+
super(DiscriminatorP, self).__init__()
|
258 |
+
self.period = period
|
259 |
+
self.d_mult = h.discriminator_channel_mult
|
260 |
+
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
261 |
+
self.convs = nn.ModuleList([
|
262 |
+
norm_f(Conv2d(1, int(32*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
263 |
+
norm_f(Conv2d(int(32*self.d_mult), int(128*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
264 |
+
norm_f(Conv2d(int(128*self.d_mult), int(512*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
265 |
+
norm_f(Conv2d(int(512*self.d_mult), int(1024*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
266 |
+
norm_f(Conv2d(int(1024*self.d_mult), int(1024*self.d_mult), (kernel_size, 1), 1, padding=(2, 0))),
|
267 |
+
])
|
268 |
+
self.conv_post = norm_f(Conv2d(int(1024*self.d_mult), 1, (3, 1), 1, padding=(1, 0)))
|
269 |
+
|
270 |
+
def forward(self, x):
|
271 |
+
fmap = []
|
272 |
+
|
273 |
+
# 1d to 2d
|
274 |
+
b, c, t = x.shape
|
275 |
+
if t % self.period != 0: # pad first
|
276 |
+
n_pad = self.period - (t % self.period)
|
277 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
278 |
+
t = t + n_pad
|
279 |
+
x = x.view(b, c, t // self.period, self.period)
|
280 |
+
|
281 |
+
for l in self.convs:
|
282 |
+
x = l(x)
|
283 |
+
x = F.leaky_relu(x, 0.1)
|
284 |
+
fmap.append(x)
|
285 |
+
x = self.conv_post(x)
|
286 |
+
fmap.append(x)
|
287 |
+
x = torch.flatten(x, 1, -1)
|
288 |
+
|
289 |
+
return x, fmap
|
290 |
+
|
291 |
+
|
292 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
293 |
+
def __init__(self, h):
|
294 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
295 |
+
self.mpd_reshapes = h.mpd_reshapes
|
296 |
+
print("mpd_reshapes: {}".format(self.mpd_reshapes))
|
297 |
+
discriminators = [DiscriminatorP(h, rs, use_spectral_norm=h.use_spectral_norm) for rs in self.mpd_reshapes]
|
298 |
+
self.discriminators = nn.ModuleList(discriminators)
|
299 |
+
|
300 |
+
def forward(self, y, y_hat):
|
301 |
+
y_d_rs = []
|
302 |
+
y_d_gs = []
|
303 |
+
fmap_rs = []
|
304 |
+
fmap_gs = []
|
305 |
+
for i, d in enumerate(self.discriminators):
|
306 |
+
y_d_r, fmap_r = d(y)
|
307 |
+
y_d_g, fmap_g = d(y_hat)
|
308 |
+
y_d_rs.append(y_d_r)
|
309 |
+
fmap_rs.append(fmap_r)
|
310 |
+
y_d_gs.append(y_d_g)
|
311 |
+
fmap_gs.append(fmap_g)
|
312 |
+
|
313 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
314 |
+
|
315 |
+
|
316 |
+
class DiscriminatorR(nn.Module):
|
317 |
+
def __init__(self, cfg, resolution):
|
318 |
+
super().__init__()
|
319 |
+
|
320 |
+
self.resolution = resolution
|
321 |
+
assert len(self.resolution) == 3, \
|
322 |
+
"MRD layer requires list with len=3, got {}".format(self.resolution)
|
323 |
+
self.lrelu_slope = 0.1
|
324 |
+
|
325 |
+
norm_f = weight_norm if cfg.use_spectral_norm == False else spectral_norm
|
326 |
+
if hasattr(cfg, "mrd_use_spectral_norm"):
|
327 |
+
print("INFO: overriding MRD use_spectral_norm as {}".format(cfg.mrd_use_spectral_norm))
|
328 |
+
norm_f = weight_norm if cfg.mrd_use_spectral_norm == False else spectral_norm
|
329 |
+
self.d_mult = cfg.discriminator_channel_mult
|
330 |
+
if hasattr(cfg, "mrd_channel_mult"):
|
331 |
+
print("INFO: overriding mrd channel multiplier as {}".format(cfg.mrd_channel_mult))
|
332 |
+
self.d_mult = cfg.mrd_channel_mult
|
333 |
+
|
334 |
+
self.convs = nn.ModuleList([
|
335 |
+
norm_f(nn.Conv2d(1, int(32*self.d_mult), (3, 9), padding=(1, 4))),
|
336 |
+
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
|
337 |
+
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
|
338 |
+
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))),
|
339 |
+
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 3), padding=(1, 1))),
|
340 |
+
])
|
341 |
+
self.conv_post = norm_f(nn.Conv2d(int(32 * self.d_mult), 1, (3, 3), padding=(1, 1)))
|
342 |
+
|
343 |
+
def forward(self, x):
|
344 |
+
fmap = []
|
345 |
+
|
346 |
+
x = self.spectrogram(x)
|
347 |
+
x = x.unsqueeze(1)
|
348 |
+
for l in self.convs:
|
349 |
+
x = l(x)
|
350 |
+
x = F.leaky_relu(x, self.lrelu_slope)
|
351 |
+
fmap.append(x)
|
352 |
+
x = self.conv_post(x)
|
353 |
+
fmap.append(x)
|
354 |
+
x = torch.flatten(x, 1, -1)
|
355 |
+
|
356 |
+
return x, fmap
|
357 |
+
|
358 |
+
def spectrogram(self, x):
|
359 |
+
n_fft, hop_length, win_length = self.resolution
|
360 |
+
x = F.pad(x, (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)), mode='reflect')
|
361 |
+
x = x.squeeze(1)
|
362 |
+
x = torch.stft(x, n_fft=n_fft, hop_length=hop_length, win_length=win_length, center=False, return_complex=True)
|
363 |
+
x = torch.view_as_real(x) # [B, F, TT, 2]
|
364 |
+
mag = torch.norm(x, p=2, dim =-1) #[B, F, TT]
|
365 |
+
|
366 |
+
return mag
|
367 |
+
|
368 |
+
|
369 |
+
class MultiResolutionDiscriminator(nn.Module):
|
370 |
+
def __init__(self, cfg, debug=False):
|
371 |
+
super().__init__()
|
372 |
+
self.resolutions = cfg.resolutions
|
373 |
+
assert len(self.resolutions) == 3,\
|
374 |
+
"MRD requires list of list with len=3, each element having a list with len=3. got {}".\
|
375 |
+
format(self.resolutions)
|
376 |
+
self.discriminators = nn.ModuleList(
|
377 |
+
[DiscriminatorR(cfg, resolution) for resolution in self.resolutions]
|
378 |
+
)
|
379 |
+
|
380 |
+
def forward(self, y, y_hat):
|
381 |
+
y_d_rs = []
|
382 |
+
y_d_gs = []
|
383 |
+
fmap_rs = []
|
384 |
+
fmap_gs = []
|
385 |
+
|
386 |
+
for i, d in enumerate(self.discriminators):
|
387 |
+
y_d_r, fmap_r = d(x=y)
|
388 |
+
y_d_g, fmap_g = d(x=y_hat)
|
389 |
+
y_d_rs.append(y_d_r)
|
390 |
+
fmap_rs.append(fmap_r)
|
391 |
+
y_d_gs.append(y_d_g)
|
392 |
+
fmap_gs.append(fmap_g)
|
393 |
+
|
394 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
395 |
+
|
396 |
+
# Method based on descript-audio-codec: https://github.com/descriptinc/descript-audio-codec
|
397 |
+
# Modified code adapted from https://github.com/gemelo-ai/vocos under the MIT license.
|
398 |
+
# LICENSE is in incl_licenses directory.
|
399 |
+
class DiscriminatorB(nn.Module):
|
400 |
+
def __init__(
|
401 |
+
self,
|
402 |
+
window_length: int,
|
403 |
+
channels: int = 32,
|
404 |
+
hop_factor: float = 0.25,
|
405 |
+
bands: Tuple[Tuple[float, float], ...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)),
|
406 |
+
):
|
407 |
+
super().__init__()
|
408 |
+
self.window_length = window_length
|
409 |
+
self.hop_factor = hop_factor
|
410 |
+
self.spec_fn = Spectrogram(
|
411 |
+
n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None
|
412 |
+
)
|
413 |
+
n_fft = window_length // 2 + 1
|
414 |
+
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
|
415 |
+
self.bands = bands
|
416 |
+
convs = lambda: nn.ModuleList(
|
417 |
+
[
|
418 |
+
weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))),
|
419 |
+
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
420 |
+
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
421 |
+
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))),
|
422 |
+
weight_norm(nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))),
|
423 |
+
]
|
424 |
+
)
|
425 |
+
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
|
426 |
+
|
427 |
+
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1)))
|
428 |
+
|
429 |
+
def spectrogram(self, x):
|
430 |
+
# Remove DC offset
|
431 |
+
x = x - x.mean(dim=-1, keepdims=True)
|
432 |
+
# Peak normalize the volume of input audio
|
433 |
+
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
|
434 |
+
x = self.spec_fn(x)
|
435 |
+
x = torch.view_as_real(x)
|
436 |
+
x = x.permute(0, 3, 2, 1) # [B, F, T, C] -> [B, C, T, F]
|
437 |
+
# Split into bands
|
438 |
+
x_bands = [x[..., b[0] : b[1]] for b in self.bands]
|
439 |
+
return x_bands
|
440 |
+
|
441 |
+
def forward(self, x: torch.Tensor):
|
442 |
+
x_bands = self.spectrogram(x.squeeze(1))
|
443 |
+
fmap = []
|
444 |
+
x = []
|
445 |
+
|
446 |
+
for band, stack in zip(x_bands, self.band_convs):
|
447 |
+
for i, layer in enumerate(stack):
|
448 |
+
band = layer(band)
|
449 |
+
band = torch.nn.functional.leaky_relu(band, 0.1)
|
450 |
+
if i > 0:
|
451 |
+
fmap.append(band)
|
452 |
+
x.append(band)
|
453 |
+
|
454 |
+
x = torch.cat(x, dim=-1)
|
455 |
+
x = self.conv_post(x)
|
456 |
+
fmap.append(x)
|
457 |
+
|
458 |
+
return x, fmap
|
459 |
+
|
460 |
+
# Method based on descript-audio-codec: https://github.com/descriptinc/descript-audio-codec
|
461 |
+
# Modified code adapted from https://github.com/gemelo-ai/vocos under the MIT license.
|
462 |
+
# LICENSE is in incl_licenses directory.
|
463 |
+
class MultiBandDiscriminator(nn.Module):
|
464 |
+
def __init__(
|
465 |
+
self,
|
466 |
+
h,
|
467 |
+
):
|
468 |
+
"""
|
469 |
+
Multi-band multi-scale STFT discriminator, with the architecture based on https://github.com/descriptinc/descript-audio-codec.
|
470 |
+
and the modified code adapted from https://github.com/gemelo-ai/vocos.
|
471 |
+
"""
|
472 |
+
super().__init__()
|
473 |
+
# fft_sizes (list[int]): Tuple of window lengths for FFT. Defaults to [2048, 1024, 512] if not set in h.
|
474 |
+
self.fft_sizes = h.get("mbd_fft_sizes", [2048, 1024, 512])
|
475 |
+
self.discriminators = nn.ModuleList(
|
476 |
+
[DiscriminatorB(window_length=w) for w in self.fft_sizes]
|
477 |
+
)
|
478 |
+
|
479 |
+
def forward(
|
480 |
+
self,
|
481 |
+
y: torch.Tensor,
|
482 |
+
y_hat: torch.Tensor
|
483 |
+
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
|
484 |
+
|
485 |
+
y_d_rs = []
|
486 |
+
y_d_gs = []
|
487 |
+
fmap_rs = []
|
488 |
+
fmap_gs = []
|
489 |
+
|
490 |
+
for d in self.discriminators:
|
491 |
+
y_d_r, fmap_r = d(x=y)
|
492 |
+
y_d_g, fmap_g = d(x=y_hat)
|
493 |
+
y_d_rs.append(y_d_r)
|
494 |
+
fmap_rs.append(fmap_r)
|
495 |
+
y_d_gs.append(y_d_g)
|
496 |
+
fmap_gs.append(fmap_g)
|
497 |
+
|
498 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
499 |
+
|
500 |
+
|
501 |
+
# Adapted from https://github.com/open-mmlab/Amphion/blob/main/models/vocoders/gan/discriminator/mssbcqtd.py under the MIT license.
|
502 |
+
# LICENSE is in incl_licenses directory.
|
503 |
+
class DiscriminatorCQT(nn.Module):
|
504 |
+
def __init__(self, cfg, hop_length, n_octaves, bins_per_octave):
|
505 |
+
super().__init__()
|
506 |
+
self.cfg = cfg
|
507 |
+
|
508 |
+
self.filters = cfg["cqtd_filters"]
|
509 |
+
self.max_filters = cfg["cqtd_max_filters"]
|
510 |
+
self.filters_scale = cfg["cqtd_filters_scale"]
|
511 |
+
self.kernel_size = (3, 9)
|
512 |
+
self.dilations = cfg["cqtd_dilations"]
|
513 |
+
self.stride = (1, 2)
|
514 |
+
|
515 |
+
self.in_channels = cfg["cqtd_in_channels"]
|
516 |
+
self.out_channels = cfg["cqtd_out_channels"]
|
517 |
+
self.fs = cfg["sampling_rate"]
|
518 |
+
self.hop_length = hop_length
|
519 |
+
self.n_octaves = n_octaves
|
520 |
+
self.bins_per_octave = bins_per_octave
|
521 |
+
|
522 |
+
# lazy-load
|
523 |
+
from nnAudio import features
|
524 |
+
self.cqt_transform = features.cqt.CQT2010v2(
|
525 |
+
sr=self.fs * 2,
|
526 |
+
hop_length=self.hop_length,
|
527 |
+
n_bins=self.bins_per_octave * self.n_octaves,
|
528 |
+
bins_per_octave=self.bins_per_octave,
|
529 |
+
output_format="Complex",
|
530 |
+
pad_mode="constant",
|
531 |
+
)
|
532 |
+
|
533 |
+
self.conv_pres = nn.ModuleList()
|
534 |
+
for i in range(self.n_octaves):
|
535 |
+
self.conv_pres.append(
|
536 |
+
nn.Conv2d(
|
537 |
+
self.in_channels * 2,
|
538 |
+
self.in_channels * 2,
|
539 |
+
kernel_size=self.kernel_size,
|
540 |
+
padding=self.get_2d_padding(self.kernel_size),
|
541 |
+
)
|
542 |
+
)
|
543 |
+
|
544 |
+
self.convs = nn.ModuleList()
|
545 |
+
|
546 |
+
self.convs.append(
|
547 |
+
nn.Conv2d(
|
548 |
+
self.in_channels * 2,
|
549 |
+
self.filters,
|
550 |
+
kernel_size=self.kernel_size,
|
551 |
+
padding=self.get_2d_padding(self.kernel_size),
|
552 |
+
)
|
553 |
+
)
|
554 |
+
|
555 |
+
in_chs = min(self.filters_scale * self.filters, self.max_filters)
|
556 |
+
for i, dilation in enumerate(self.dilations):
|
557 |
+
out_chs = min(
|
558 |
+
(self.filters_scale ** (i + 1)) * self.filters, self.max_filters
|
559 |
+
)
|
560 |
+
self.convs.append(
|
561 |
+
weight_norm(nn.Conv2d(
|
562 |
+
in_chs,
|
563 |
+
out_chs,
|
564 |
+
kernel_size=self.kernel_size,
|
565 |
+
stride=self.stride,
|
566 |
+
dilation=(dilation, 1),
|
567 |
+
padding=self.get_2d_padding(self.kernel_size, (dilation, 1)),
|
568 |
+
))
|
569 |
+
)
|
570 |
+
in_chs = out_chs
|
571 |
+
out_chs = min(
|
572 |
+
(self.filters_scale ** (len(self.dilations) + 1)) * self.filters,
|
573 |
+
self.max_filters,
|
574 |
+
)
|
575 |
+
self.convs.append(
|
576 |
+
weight_norm(nn.Conv2d(
|
577 |
+
in_chs,
|
578 |
+
out_chs,
|
579 |
+
kernel_size=(self.kernel_size[0], self.kernel_size[0]),
|
580 |
+
padding=self.get_2d_padding((self.kernel_size[0], self.kernel_size[0])),
|
581 |
+
))
|
582 |
+
)
|
583 |
+
|
584 |
+
self.conv_post = weight_norm(nn.Conv2d(
|
585 |
+
out_chs,
|
586 |
+
self.out_channels,
|
587 |
+
kernel_size=(self.kernel_size[0], self.kernel_size[0]),
|
588 |
+
padding=self.get_2d_padding((self.kernel_size[0], self.kernel_size[0])),
|
589 |
+
))
|
590 |
+
|
591 |
+
self.activation = torch.nn.LeakyReLU(negative_slope=0.1)
|
592 |
+
self.resample = Resample(orig_freq=self.fs, new_freq=self.fs * 2)
|
593 |
+
|
594 |
+
self.cqtd_normalize_volume = self.cfg.get("cqtd_normalize_volume", False)
|
595 |
+
if self.cqtd_normalize_volume:
|
596 |
+
print(f"INFO: cqtd_normalize_volume set to True. Will apply DC offset removal & peak volume normalization in CQTD!")
|
597 |
+
|
598 |
+
def get_2d_padding(
|
599 |
+
self, kernel_size: typing.Tuple[int, int], dilation: typing.Tuple[int, int] = (1, 1)
|
600 |
+
):
|
601 |
+
return (
|
602 |
+
((kernel_size[0] - 1) * dilation[0]) // 2,
|
603 |
+
((kernel_size[1] - 1) * dilation[1]) // 2,
|
604 |
+
)
|
605 |
+
|
606 |
+
def forward(self, x):
|
607 |
+
fmap = []
|
608 |
+
|
609 |
+
if self.cqtd_normalize_volume:
|
610 |
+
# Remove DC offset
|
611 |
+
x = x - x.mean(dim=-1, keepdims=True)
|
612 |
+
# Peak normalize the volume of input audio
|
613 |
+
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
|
614 |
+
|
615 |
+
x = self.resample(x)
|
616 |
+
|
617 |
+
z = self.cqt_transform(x)
|
618 |
+
|
619 |
+
z_amplitude = z[:, :, :, 0].unsqueeze(1)
|
620 |
+
z_phase = z[:, :, :, 1].unsqueeze(1)
|
621 |
+
|
622 |
+
z = torch.cat([z_amplitude, z_phase], dim=1)
|
623 |
+
z = torch.permute(z, (0, 1, 3, 2)) # [B, C, W, T] -> [B, C, T, W]
|
624 |
+
|
625 |
+
latent_z = []
|
626 |
+
for i in range(self.n_octaves):
|
627 |
+
latent_z.append(
|
628 |
+
self.conv_pres[i](
|
629 |
+
z[
|
630 |
+
:,
|
631 |
+
:,
|
632 |
+
:,
|
633 |
+
i * self.bins_per_octave : (i + 1) * self.bins_per_octave,
|
634 |
+
]
|
635 |
+
)
|
636 |
+
)
|
637 |
+
latent_z = torch.cat(latent_z, dim=-1)
|
638 |
+
|
639 |
+
for i, l in enumerate(self.convs):
|
640 |
+
latent_z = l(latent_z)
|
641 |
+
|
642 |
+
latent_z = self.activation(latent_z)
|
643 |
+
fmap.append(latent_z)
|
644 |
+
|
645 |
+
latent_z = self.conv_post(latent_z)
|
646 |
+
|
647 |
+
return latent_z, fmap
|
648 |
+
|
649 |
+
|
650 |
+
class MultiScaleSubbandCQTDiscriminator(nn.Module):
|
651 |
+
def __init__(self, cfg):
|
652 |
+
super().__init__()
|
653 |
+
|
654 |
+
self.cfg = cfg
|
655 |
+
# Using get with defaults
|
656 |
+
self.cfg["cqtd_filters"] = self.cfg.get("cqtd_filters", 32)
|
657 |
+
self.cfg["cqtd_max_filters"] = self.cfg.get("cqtd_max_filters", 1024)
|
658 |
+
self.cfg["cqtd_filters_scale"] = self.cfg.get("cqtd_filters_scale", 1)
|
659 |
+
self.cfg["cqtd_dilations"] = self.cfg.get("cqtd_dilations", [1, 2, 4])
|
660 |
+
self.cfg["cqtd_in_channels"] = self.cfg.get("cqtd_in_channels", 1)
|
661 |
+
self.cfg["cqtd_out_channels"] = self.cfg.get("cqtd_out_channels", 1)
|
662 |
+
# multi-scale params to loop over
|
663 |
+
self.cfg["cqtd_hop_lengths"] = self.cfg.get("cqtd_hop_lengths", [512, 256, 256])
|
664 |
+
self.cfg["cqtd_n_octaves"] = self.cfg.get("cqtd_n_octaves", [9, 9, 9])
|
665 |
+
self.cfg["cqtd_bins_per_octaves"] = self.cfg.get("cqtd_bins_per_octaves", [24, 36, 48])
|
666 |
+
|
667 |
+
self.discriminators = nn.ModuleList(
|
668 |
+
[
|
669 |
+
DiscriminatorCQT(
|
670 |
+
self.cfg,
|
671 |
+
hop_length=self.cfg["cqtd_hop_lengths"][i],
|
672 |
+
n_octaves=self.cfg["cqtd_n_octaves"][i],
|
673 |
+
bins_per_octave=self.cfg["cqtd_bins_per_octaves"][i],
|
674 |
+
)
|
675 |
+
for i in range(len(self.cfg["cqtd_hop_lengths"]))
|
676 |
+
]
|
677 |
+
)
|
678 |
+
|
679 |
+
def forward(
|
680 |
+
self,
|
681 |
+
y: torch.Tensor,
|
682 |
+
y_hat: torch.Tensor
|
683 |
+
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
|
684 |
+
|
685 |
+
y_d_rs = []
|
686 |
+
y_d_gs = []
|
687 |
+
fmap_rs = []
|
688 |
+
fmap_gs = []
|
689 |
+
|
690 |
+
for disc in self.discriminators:
|
691 |
+
y_d_r, fmap_r = disc(y)
|
692 |
+
y_d_g, fmap_g = disc(y_hat)
|
693 |
+
y_d_rs.append(y_d_r)
|
694 |
+
fmap_rs.append(fmap_r)
|
695 |
+
y_d_gs.append(y_d_g)
|
696 |
+
fmap_gs.append(fmap_g)
|
697 |
+
|
698 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
699 |
+
|
700 |
+
|
701 |
+
class CombinedDiscriminator(nn.Module):
|
702 |
+
# wrapper of chaining multiple discrimiantor architectures
|
703 |
+
# ex: combine mbd and cqtd as a single class
|
704 |
+
def __init__(
|
705 |
+
self,
|
706 |
+
list_discriminator: List[nn.Module]
|
707 |
+
):
|
708 |
+
super().__init__()
|
709 |
+
self.discrimiantor = nn.ModuleList(list_discriminator)
|
710 |
+
|
711 |
+
def forward(
|
712 |
+
self,
|
713 |
+
y: torch.Tensor,
|
714 |
+
y_hat: torch.Tensor
|
715 |
+
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]:
|
716 |
+
|
717 |
+
y_d_rs = []
|
718 |
+
y_d_gs = []
|
719 |
+
fmap_rs = []
|
720 |
+
fmap_gs = []
|
721 |
+
|
722 |
+
for disc in self.discrimiantor:
|
723 |
+
y_d_r, y_d_g, fmap_r, fmap_g = disc(y, y_hat)
|
724 |
+
y_d_rs.extend(y_d_r)
|
725 |
+
fmap_rs.extend(fmap_r)
|
726 |
+
y_d_gs.extend(y_d_g)
|
727 |
+
fmap_gs.extend(fmap_g)
|
728 |
+
|
729 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
730 |
+
|
731 |
+
|
732 |
+
# Adapted from https://github.com/descriptinc/descript-audio-codec/blob/main/dac/nn/loss.py under the MIT license.
|
733 |
+
# LICENSE is in incl_licenses directory.
|
734 |
+
class MultiScaleMelSpectrogramLoss(nn.Module):
|
735 |
+
"""Compute distance between mel spectrograms. Can be used
|
736 |
+
in a multi-scale way.
|
737 |
+
|
738 |
+
Parameters
|
739 |
+
----------
|
740 |
+
n_mels : List[int]
|
741 |
+
Number of mels per STFT, by default [5, 10, 20, 40, 80, 160, 320],
|
742 |
+
window_lengths : List[int], optional
|
743 |
+
Length of each window of each STFT, by default [32, 64, 128, 256, 512, 1024, 2048]
|
744 |
+
loss_fn : typing.Callable, optional
|
745 |
+
How to compare each loss, by default nn.L1Loss()
|
746 |
+
clamp_eps : float, optional
|
747 |
+
Clamp on the log magnitude, below, by default 1e-5
|
748 |
+
mag_weight : float, optional
|
749 |
+
Weight of raw magnitude portion of loss, by default 0.0 (no ampliciation on mag part)
|
750 |
+
log_weight : float, optional
|
751 |
+
Weight of log magnitude portion of loss, by default 1.0
|
752 |
+
pow : float, optional
|
753 |
+
Power to raise magnitude to before taking log, by default 1.0
|
754 |
+
weight : float, optional
|
755 |
+
Weight of this loss, by default 1.0
|
756 |
+
match_stride : bool, optional
|
757 |
+
Whether to match the stride of convolutional layers, by default False
|
758 |
+
|
759 |
+
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py
|
760 |
+
Additional code copied and modified from https://github.com/descriptinc/audiotools/blob/master/audiotools/core/audio_signal.py
|
761 |
+
"""
|
762 |
+
|
763 |
+
def __init__(
|
764 |
+
self,
|
765 |
+
sampling_rate: int,
|
766 |
+
n_mels: List[int] = [5, 10, 20, 40, 80, 160, 320],
|
767 |
+
window_lengths: List[int] = [32, 64, 128, 256, 512, 1024, 2048],
|
768 |
+
loss_fn: typing.Callable = nn.L1Loss(),
|
769 |
+
clamp_eps: float = 1e-5,
|
770 |
+
mag_weight: float = 0.0,
|
771 |
+
log_weight: float = 1.0,
|
772 |
+
pow: float = 1.0,
|
773 |
+
weight: float = 1.0,
|
774 |
+
match_stride: bool = False,
|
775 |
+
mel_fmin: List[float] = [0, 0, 0, 0, 0, 0, 0],
|
776 |
+
mel_fmax: List[float] = [None, None, None, None, None, None, None],
|
777 |
+
window_type: str = 'hann',
|
778 |
+
):
|
779 |
+
super().__init__()
|
780 |
+
self.sampling_rate = sampling_rate
|
781 |
+
|
782 |
+
STFTParams = namedtuple(
|
783 |
+
"STFTParams",
|
784 |
+
["window_length", "hop_length", "window_type", "match_stride"],
|
785 |
+
)
|
786 |
+
|
787 |
+
self.stft_params = [
|
788 |
+
STFTParams(
|
789 |
+
window_length=w,
|
790 |
+
hop_length=w // 4,
|
791 |
+
match_stride=match_stride,
|
792 |
+
window_type=window_type,
|
793 |
+
)
|
794 |
+
for w in window_lengths
|
795 |
+
]
|
796 |
+
self.n_mels = n_mels
|
797 |
+
self.loss_fn = loss_fn
|
798 |
+
self.clamp_eps = clamp_eps
|
799 |
+
self.log_weight = log_weight
|
800 |
+
self.mag_weight = mag_weight
|
801 |
+
self.weight = weight
|
802 |
+
self.mel_fmin = mel_fmin
|
803 |
+
self.mel_fmax = mel_fmax
|
804 |
+
self.pow = pow
|
805 |
+
|
806 |
+
@staticmethod
|
807 |
+
@functools.lru_cache(None)
|
808 |
+
def get_window(
|
809 |
+
window_type,window_length,
|
810 |
+
):
|
811 |
+
return signal.get_window(window_type, window_length)
|
812 |
+
|
813 |
+
@staticmethod
|
814 |
+
@functools.lru_cache(None)
|
815 |
+
def get_mel_filters(
|
816 |
+
sr, n_fft, n_mels, fmin, fmax
|
817 |
+
):
|
818 |
+
return librosa_mel_fn(sr=sr, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
|
819 |
+
|
820 |
+
def mel_spectrogram(
|
821 |
+
self, wav, n_mels, fmin, fmax, window_length, hop_length, match_stride, window_type
|
822 |
+
):
|
823 |
+
# mirrors AudioSignal.mel_spectrogram used by BigVGAN-v2 training from:
|
824 |
+
# https://github.com/descriptinc/audiotools/blob/master/audiotools/core/audio_signal.py
|
825 |
+
B, C, T = wav.shape
|
826 |
+
|
827 |
+
if match_stride:
|
828 |
+
assert (
|
829 |
+
hop_length == window_length // 4
|
830 |
+
), "For match_stride, hop must equal n_fft // 4"
|
831 |
+
right_pad = math.ceil(T / hop_length) * hop_length - T
|
832 |
+
pad = (window_length - hop_length) // 2
|
833 |
+
else:
|
834 |
+
right_pad = 0
|
835 |
+
pad = 0
|
836 |
+
|
837 |
+
wav = torch.nn.functional.pad(
|
838 |
+
wav, (pad, pad + right_pad), mode='reflect'
|
839 |
+
)
|
840 |
+
|
841 |
+
window = self.get_window(window_type, window_length)
|
842 |
+
window = torch.from_numpy(window).to(wav.device).float()
|
843 |
+
|
844 |
+
stft = torch.stft(
|
845 |
+
wav.reshape(-1, T),
|
846 |
+
n_fft=window_length,
|
847 |
+
hop_length=hop_length,
|
848 |
+
window=window,
|
849 |
+
return_complex=True,
|
850 |
+
center=True,
|
851 |
+
)
|
852 |
+
_, nf, nt = stft.shape
|
853 |
+
stft = stft.reshape(B, C, nf, nt)
|
854 |
+
if match_stride:
|
855 |
+
# Drop first two and last two frames, which are added
|
856 |
+
# because of padding. Now num_frames * hop_length = num_samples.
|
857 |
+
stft = stft[..., 2:-2]
|
858 |
+
magnitude = torch.abs(stft)
|
859 |
+
|
860 |
+
nf = magnitude.shape[2]
|
861 |
+
mel_basis = self.get_mel_filters(self.sampling_rate, 2 * (nf - 1), n_mels, fmin, fmax)
|
862 |
+
mel_basis = torch.from_numpy(mel_basis).to(wav.device)
|
863 |
+
mel_spectrogram = magnitude.transpose(2, -1) @ mel_basis.T
|
864 |
+
mel_spectrogram = mel_spectrogram.transpose(-1, 2)
|
865 |
+
|
866 |
+
return mel_spectrogram
|
867 |
+
|
868 |
+
def forward(
|
869 |
+
self,
|
870 |
+
x: torch.Tensor,
|
871 |
+
y: torch.Tensor
|
872 |
+
) -> torch.Tensor:
|
873 |
+
"""Computes mel loss between an estimate and a reference
|
874 |
+
signal.
|
875 |
+
|
876 |
+
Parameters
|
877 |
+
----------
|
878 |
+
x : torch.Tensor
|
879 |
+
Estimate signal
|
880 |
+
y : torch.Tensor
|
881 |
+
Reference signal
|
882 |
+
|
883 |
+
Returns
|
884 |
+
-------
|
885 |
+
torch.Tensor
|
886 |
+
Mel loss.
|
887 |
+
"""
|
888 |
+
|
889 |
+
loss = 0.0
|
890 |
+
for n_mels, fmin, fmax, s in zip(
|
891 |
+
self.n_mels, self.mel_fmin, self.mel_fmax, self.stft_params
|
892 |
+
):
|
893 |
+
kwargs = {
|
894 |
+
"n_mels": n_mels,
|
895 |
+
"fmin": fmin,
|
896 |
+
"fmax": fmax,
|
897 |
+
"window_length": s.window_length,
|
898 |
+
"hop_length": s.hop_length,
|
899 |
+
"match_stride": s.match_stride,
|
900 |
+
"window_type": s.window_type,
|
901 |
+
}
|
902 |
+
|
903 |
+
x_mels = self.mel_spectrogram(x, **kwargs)
|
904 |
+
y_mels = self.mel_spectrogram(y, **kwargs)
|
905 |
+
x_logmels = torch.log(x_mels.clamp(min=self.clamp_eps).pow(self.pow)) / torch.log(torch.tensor(10.0))
|
906 |
+
y_logmels = torch.log(y_mels.clamp(min=self.clamp_eps).pow(self.pow)) / torch.log(torch.tensor(10.0))
|
907 |
+
|
908 |
+
loss += self.log_weight * self.loss_fn(x_logmels, y_logmels)
|
909 |
+
loss += self.mag_weight * self.loss_fn(x_logmels, y_logmels)
|
910 |
+
|
911 |
+
return loss
|
912 |
+
|
913 |
+
|
914 |
+
# loss functions
|
915 |
+
def feature_loss(
|
916 |
+
fmap_r: List[List[torch.Tensor]],
|
917 |
+
fmap_g: List[List[torch.Tensor]]
|
918 |
+
) -> torch.Tensor:
|
919 |
+
|
920 |
+
loss = 0
|
921 |
+
for dr, dg in zip(fmap_r, fmap_g):
|
922 |
+
for rl, gl in zip(dr, dg):
|
923 |
+
loss += torch.mean(torch.abs(rl - gl))
|
924 |
+
|
925 |
+
return loss*2 # this equates to lambda=2.0 for the feature matching loss
|
926 |
+
|
927 |
+
def discriminator_loss(
|
928 |
+
disc_real_outputs: List[torch.Tensor],
|
929 |
+
disc_generated_outputs: List[torch.Tensor]
|
930 |
+
) -> Tuple[torch.Tensor, List[torch.Tensor], List[torch.Tensor]]:
|
931 |
+
|
932 |
+
loss = 0
|
933 |
+
r_losses = []
|
934 |
+
g_losses = []
|
935 |
+
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
936 |
+
r_loss = torch.mean((1-dr)**2)
|
937 |
+
g_loss = torch.mean(dg**2)
|
938 |
+
loss += (r_loss + g_loss)
|
939 |
+
r_losses.append(r_loss.item())
|
940 |
+
g_losses.append(g_loss.item())
|
941 |
+
|
942 |
+
return loss, r_losses, g_losses
|
943 |
+
|
944 |
+
def generator_loss(
|
945 |
+
disc_outputs: List[torch.Tensor]
|
946 |
+
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
947 |
+
|
948 |
+
loss = 0
|
949 |
+
gen_losses = []
|
950 |
+
for dg in disc_outputs:
|
951 |
+
l = torch.mean((1-dg)**2)
|
952 |
+
gen_losses.append(l)
|
953 |
+
loss += l
|
954 |
+
|
955 |
+
return loss, gen_losses
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchaudio
|
3 |
+
numpy<2
|
4 |
+
librosa>=0.8.1
|
5 |
+
scipy
|
6 |
+
tensorboard
|
7 |
+
soundfile
|
8 |
+
matplotlib
|
9 |
+
pesq
|
10 |
+
auraloss
|
11 |
+
tqdm
|
12 |
+
nnAudio
|
13 |
+
ninja
|
utils.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import glob
|
5 |
+
import os
|
6 |
+
import matplotlib
|
7 |
+
import torch
|
8 |
+
from torch.nn.utils import weight_norm
|
9 |
+
matplotlib.use("Agg")
|
10 |
+
import matplotlib.pylab as plt
|
11 |
+
from meldataset import MAX_WAV_VALUE
|
12 |
+
from scipy.io.wavfile import write
|
13 |
+
|
14 |
+
|
15 |
+
def plot_spectrogram(spectrogram):
|
16 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
17 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
18 |
+
interpolation='none')
|
19 |
+
plt.colorbar(im, ax=ax)
|
20 |
+
|
21 |
+
fig.canvas.draw()
|
22 |
+
plt.close()
|
23 |
+
|
24 |
+
return fig
|
25 |
+
|
26 |
+
|
27 |
+
def plot_spectrogram_clipped(spectrogram, clip_max=2.):
|
28 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
29 |
+
im = ax.imshow(spectrogram, aspect="auto", origin="lower",
|
30 |
+
interpolation='none', vmin=1e-6, vmax=clip_max)
|
31 |
+
plt.colorbar(im, ax=ax)
|
32 |
+
|
33 |
+
fig.canvas.draw()
|
34 |
+
plt.close()
|
35 |
+
|
36 |
+
return fig
|
37 |
+
|
38 |
+
|
39 |
+
def init_weights(m, mean=0.0, std=0.01):
|
40 |
+
classname = m.__class__.__name__
|
41 |
+
if classname.find("Conv") != -1:
|
42 |
+
m.weight.data.normal_(mean, std)
|
43 |
+
|
44 |
+
|
45 |
+
def apply_weight_norm(m):
|
46 |
+
classname = m.__class__.__name__
|
47 |
+
if classname.find("Conv") != -1:
|
48 |
+
weight_norm(m)
|
49 |
+
|
50 |
+
|
51 |
+
def get_padding(kernel_size, dilation=1):
|
52 |
+
return int((kernel_size*dilation - dilation)/2)
|
53 |
+
|
54 |
+
|
55 |
+
def load_checkpoint(filepath, device):
|
56 |
+
assert os.path.isfile(filepath)
|
57 |
+
print("Loading '{}'".format(filepath))
|
58 |
+
checkpoint_dict = torch.load(filepath, map_location=device)
|
59 |
+
print("Complete.")
|
60 |
+
return checkpoint_dict
|
61 |
+
|
62 |
+
|
63 |
+
def save_checkpoint(filepath, obj):
|
64 |
+
print("Saving checkpoint to {}".format(filepath))
|
65 |
+
torch.save(obj, filepath)
|
66 |
+
print("Complete.")
|
67 |
+
|
68 |
+
|
69 |
+
def scan_checkpoint(cp_dir, prefix):
|
70 |
+
pattern = os.path.join(cp_dir, prefix + '????????')
|
71 |
+
cp_list = glob.glob(pattern)
|
72 |
+
if len(cp_list) == 0:
|
73 |
+
return None
|
74 |
+
return sorted(cp_list)[-1]
|
75 |
+
|
76 |
+
def save_audio(audio, path, sr):
|
77 |
+
# wav: torch with 1d shape
|
78 |
+
audio = audio * MAX_WAV_VALUE
|
79 |
+
audio = audio.cpu().numpy().astype('int16')
|
80 |
+
write(path, sr, audio)
|