|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.nn as nn |
|
from torch.nn import Conv1d, ConvTranspose1d, Conv2d |
|
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm |
|
from torchaudio.transforms import Spectrogram, Resample |
|
from librosa.filters import mel as librosa_mel_fn |
|
from scipy import signal |
|
|
|
import activations |
|
from utils import init_weights, get_padding |
|
from alias_free_torch.act import Activation1d as TorchActivation1d |
|
import typing |
|
from typing import List, Optional, Tuple |
|
from collections import namedtuple |
|
import math |
|
import functools |
|
|
|
|
|
class AMPBlock1(torch.nn.Module): |
|
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5), activation=None): |
|
super(AMPBlock1, self).__init__() |
|
self.h = h |
|
|
|
self.convs1 = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2], |
|
padding=get_padding(kernel_size, dilation[2]))) |
|
]) |
|
self.convs1.apply(init_weights) |
|
|
|
self.convs2 = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1, |
|
padding=get_padding(kernel_size, 1))) |
|
]) |
|
self.convs2.apply(init_weights) |
|
|
|
self.num_layers = len(self.convs1) + len(self.convs2) |
|
|
|
|
|
if self.h.get("use_cuda_kernel", False): |
|
|
|
from alias_free_cuda.activation1d import Activation1d as CudaActivation1d |
|
Activation1d = CudaActivation1d |
|
else: |
|
Activation1d = TorchActivation1d |
|
|
|
if activation == 'snake': |
|
self.activations = nn.ModuleList([ |
|
Activation1d( |
|
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale)) |
|
for _ in range(self.num_layers) |
|
]) |
|
elif activation == 'snakebeta': |
|
self.activations = nn.ModuleList([ |
|
Activation1d( |
|
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale)) |
|
for _ in range(self.num_layers) |
|
]) |
|
else: |
|
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.") |
|
|
|
def forward(self, x): |
|
acts1, acts2 = self.activations[::2], self.activations[1::2] |
|
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2): |
|
xt = a1(x) |
|
xt = c1(xt) |
|
xt = a2(xt) |
|
xt = c2(xt) |
|
x = xt + x |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs1: |
|
remove_weight_norm(l) |
|
for l in self.convs2: |
|
remove_weight_norm(l) |
|
|
|
|
|
class AMPBlock2(torch.nn.Module): |
|
def __init__(self, h, channels, kernel_size=3, dilation=(1, 3), activation=None): |
|
super(AMPBlock2, self).__init__() |
|
self.h = h |
|
|
|
self.convs = nn.ModuleList([ |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0], |
|
padding=get_padding(kernel_size, dilation[0]))), |
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1], |
|
padding=get_padding(kernel_size, dilation[1]))) |
|
]) |
|
self.convs.apply(init_weights) |
|
|
|
self.num_layers = len(self.convs) |
|
|
|
|
|
if self.h.get("use_cuda_kernel", False): |
|
|
|
from alias_free_cuda.activation1d import Activation1d as CudaActivation1d |
|
Activation1d = CudaActivation1d |
|
else: |
|
Activation1d = TorchActivation1d |
|
|
|
if activation == 'snake': |
|
self.activations = nn.ModuleList([ |
|
Activation1d( |
|
activation=activations.Snake(channels, alpha_logscale=h.snake_logscale)) |
|
for _ in range(self.num_layers) |
|
]) |
|
elif activation == 'snakebeta': |
|
self.activations = nn.ModuleList([ |
|
Activation1d( |
|
activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale)) |
|
for _ in range(self.num_layers) |
|
]) |
|
else: |
|
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.") |
|
|
|
def forward(self, x): |
|
for c, a in zip (self.convs, self.activations): |
|
xt = a(x) |
|
xt = c(xt) |
|
x = xt + x |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for l in self.convs: |
|
remove_weight_norm(l) |
|
|
|
|
|
class BigVGAN(torch.nn.Module): |
|
|
|
|
|
|
|
def __init__( |
|
self, |
|
h, |
|
use_cuda_kernel: bool=False |
|
): |
|
super(BigVGAN, self).__init__() |
|
self.h = h |
|
self.h["use_cuda_kernel"] = use_cuda_kernel |
|
|
|
self.num_kernels = len(h.resblock_kernel_sizes) |
|
self.num_upsamples = len(h.upsample_rates) |
|
|
|
|
|
self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3)) |
|
|
|
|
|
resblock = AMPBlock1 if h.resblock == '1' else AMPBlock2 |
|
|
|
|
|
self.ups = nn.ModuleList() |
|
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)): |
|
self.ups.append(nn.ModuleList([ |
|
weight_norm(ConvTranspose1d(h.upsample_initial_channel // (2 ** i), |
|
h.upsample_initial_channel // (2 ** (i + 1)), |
|
k, u, padding=(k - u) // 2)) |
|
])) |
|
|
|
|
|
self.resblocks = nn.ModuleList() |
|
for i in range(len(self.ups)): |
|
ch = h.upsample_initial_channel // (2 ** (i + 1)) |
|
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)): |
|
self.resblocks.append(resblock(h, ch, k, d, activation=h.activation)) |
|
|
|
|
|
if self.h.get("use_cuda_kernel", False): |
|
|
|
from alias_free_cuda.activation1d import Activation1d as CudaActivation1d |
|
Activation1d = CudaActivation1d |
|
else: |
|
Activation1d = TorchActivation1d |
|
|
|
|
|
if h.activation == "snake": |
|
activation_post = activations.Snake(ch, alpha_logscale=h.snake_logscale) |
|
self.activation_post = Activation1d(activation=activation_post) |
|
elif h.activation == "snakebeta": |
|
activation_post = activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale) |
|
self.activation_post = Activation1d(activation=activation_post) |
|
else: |
|
raise NotImplementedError("activation incorrectly specified. check the config file and look for 'activation'.") |
|
|
|
|
|
self.use_bias_at_final = h.get("use_bias_at_final", True) |
|
self.conv_post = weight_norm(Conv1d( |
|
ch, 1, 7, 1, padding=3, bias=self.use_bias_at_final |
|
)) |
|
|
|
|
|
for i in range(len(self.ups)): |
|
self.ups[i].apply(init_weights) |
|
self.conv_post.apply(init_weights) |
|
|
|
|
|
self.use_tanh_at_final = h.get("use_tanh_at_final", True) |
|
|
|
def forward(self, x): |
|
|
|
x = self.conv_pre(x) |
|
|
|
for i in range(self.num_upsamples): |
|
|
|
for i_up in range(len(self.ups[i])): |
|
x = self.ups[i][i_up](x) |
|
|
|
xs = None |
|
for j in range(self.num_kernels): |
|
if xs is None: |
|
xs = self.resblocks[i * self.num_kernels + j](x) |
|
else: |
|
xs += self.resblocks[i * self.num_kernels + j](x) |
|
x = xs / self.num_kernels |
|
|
|
|
|
x = self.activation_post(x) |
|
x = self.conv_post(x) |
|
|
|
if self.use_tanh_at_final: |
|
x = torch.tanh(x) |
|
else: |
|
x = torch.clamp(x, min=-1., max=1.) |
|
|
|
return x |
|
|
|
def remove_weight_norm(self): |
|
print('Removing weight norm...') |
|
for l in self.ups: |
|
for l_i in l: |
|
remove_weight_norm(l_i) |
|
for l in self.resblocks: |
|
l.remove_weight_norm() |
|
remove_weight_norm(self.conv_pre) |
|
remove_weight_norm(self.conv_post) |
|
|
|
|
|
class DiscriminatorP(torch.nn.Module): |
|
def __init__(self, h, period, kernel_size=5, stride=3, use_spectral_norm=False): |
|
super(DiscriminatorP, self).__init__() |
|
self.period = period |
|
self.d_mult = h.discriminator_channel_mult |
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm |
|
self.convs = nn.ModuleList([ |
|
norm_f(Conv2d(1, int(32*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), |
|
norm_f(Conv2d(int(32*self.d_mult), int(128*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), |
|
norm_f(Conv2d(int(128*self.d_mult), int(512*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), |
|
norm_f(Conv2d(int(512*self.d_mult), int(1024*self.d_mult), (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))), |
|
norm_f(Conv2d(int(1024*self.d_mult), int(1024*self.d_mult), (kernel_size, 1), 1, padding=(2, 0))), |
|
]) |
|
self.conv_post = norm_f(Conv2d(int(1024*self.d_mult), 1, (3, 1), 1, padding=(1, 0))) |
|
|
|
def forward(self, x): |
|
fmap = [] |
|
|
|
|
|
b, c, t = x.shape |
|
if t % self.period != 0: |
|
n_pad = self.period - (t % self.period) |
|
x = F.pad(x, (0, n_pad), "reflect") |
|
t = t + n_pad |
|
x = x.view(b, c, t // self.period, self.period) |
|
|
|
for l in self.convs: |
|
x = l(x) |
|
x = F.leaky_relu(x, 0.1) |
|
fmap.append(x) |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
|
|
return x, fmap |
|
|
|
|
|
class MultiPeriodDiscriminator(torch.nn.Module): |
|
def __init__(self, h): |
|
super(MultiPeriodDiscriminator, self).__init__() |
|
self.mpd_reshapes = h.mpd_reshapes |
|
print("mpd_reshapes: {}".format(self.mpd_reshapes)) |
|
discriminators = [DiscriminatorP(h, rs, use_spectral_norm=h.use_spectral_norm) for rs in self.mpd_reshapes] |
|
self.discriminators = nn.ModuleList(discriminators) |
|
|
|
def forward(self, y, y_hat): |
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
for i, d in enumerate(self.discriminators): |
|
y_d_r, fmap_r = d(y) |
|
y_d_g, fmap_g = d(y_hat) |
|
y_d_rs.append(y_d_r) |
|
fmap_rs.append(fmap_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
class DiscriminatorR(nn.Module): |
|
def __init__(self, cfg, resolution): |
|
super().__init__() |
|
|
|
self.resolution = resolution |
|
assert len(self.resolution) == 3, \ |
|
"MRD layer requires list with len=3, got {}".format(self.resolution) |
|
self.lrelu_slope = 0.1 |
|
|
|
norm_f = weight_norm if cfg.use_spectral_norm == False else spectral_norm |
|
if hasattr(cfg, "mrd_use_spectral_norm"): |
|
print("INFO: overriding MRD use_spectral_norm as {}".format(cfg.mrd_use_spectral_norm)) |
|
norm_f = weight_norm if cfg.mrd_use_spectral_norm == False else spectral_norm |
|
self.d_mult = cfg.discriminator_channel_mult |
|
if hasattr(cfg, "mrd_channel_mult"): |
|
print("INFO: overriding mrd channel multiplier as {}".format(cfg.mrd_channel_mult)) |
|
self.d_mult = cfg.mrd_channel_mult |
|
|
|
self.convs = nn.ModuleList([ |
|
norm_f(nn.Conv2d(1, int(32*self.d_mult), (3, 9), padding=(1, 4))), |
|
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))), |
|
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))), |
|
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 9), stride=(1, 2), padding=(1, 4))), |
|
norm_f(nn.Conv2d(int(32*self.d_mult), int(32*self.d_mult), (3, 3), padding=(1, 1))), |
|
]) |
|
self.conv_post = norm_f(nn.Conv2d(int(32 * self.d_mult), 1, (3, 3), padding=(1, 1))) |
|
|
|
def forward(self, x): |
|
fmap = [] |
|
|
|
x = self.spectrogram(x) |
|
x = x.unsqueeze(1) |
|
for l in self.convs: |
|
x = l(x) |
|
x = F.leaky_relu(x, self.lrelu_slope) |
|
fmap.append(x) |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
x = torch.flatten(x, 1, -1) |
|
|
|
return x, fmap |
|
|
|
def spectrogram(self, x): |
|
n_fft, hop_length, win_length = self.resolution |
|
x = F.pad(x, (int((n_fft - hop_length) / 2), int((n_fft - hop_length) / 2)), mode='reflect') |
|
x = x.squeeze(1) |
|
x = torch.stft(x, n_fft=n_fft, hop_length=hop_length, win_length=win_length, center=False, return_complex=True) |
|
x = torch.view_as_real(x) |
|
mag = torch.norm(x, p=2, dim =-1) |
|
|
|
return mag |
|
|
|
|
|
class MultiResolutionDiscriminator(nn.Module): |
|
def __init__(self, cfg, debug=False): |
|
super().__init__() |
|
self.resolutions = cfg.resolutions |
|
assert len(self.resolutions) == 3,\ |
|
"MRD requires list of list with len=3, each element having a list with len=3. got {}".\ |
|
format(self.resolutions) |
|
self.discriminators = nn.ModuleList( |
|
[DiscriminatorR(cfg, resolution) for resolution in self.resolutions] |
|
) |
|
|
|
def forward(self, y, y_hat): |
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
|
|
for i, d in enumerate(self.discriminators): |
|
y_d_r, fmap_r = d(x=y) |
|
y_d_g, fmap_g = d(x=y_hat) |
|
y_d_rs.append(y_d_r) |
|
fmap_rs.append(fmap_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
|
|
|
|
class DiscriminatorB(nn.Module): |
|
def __init__( |
|
self, |
|
window_length: int, |
|
channels: int = 32, |
|
hop_factor: float = 0.25, |
|
bands: Tuple[Tuple[float, float], ...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)), |
|
): |
|
super().__init__() |
|
self.window_length = window_length |
|
self.hop_factor = hop_factor |
|
self.spec_fn = Spectrogram( |
|
n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None |
|
) |
|
n_fft = window_length // 2 + 1 |
|
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands] |
|
self.bands = bands |
|
convs = lambda: nn.ModuleList( |
|
[ |
|
weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))), |
|
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))), |
|
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))), |
|
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))), |
|
weight_norm(nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))), |
|
] |
|
) |
|
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))]) |
|
|
|
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1))) |
|
|
|
def spectrogram(self, x): |
|
|
|
x = x - x.mean(dim=-1, keepdims=True) |
|
|
|
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9) |
|
x = self.spec_fn(x) |
|
x = torch.view_as_real(x) |
|
x = x.permute(0, 3, 2, 1) |
|
|
|
x_bands = [x[..., b[0] : b[1]] for b in self.bands] |
|
return x_bands |
|
|
|
def forward(self, x: torch.Tensor): |
|
x_bands = self.spectrogram(x.squeeze(1)) |
|
fmap = [] |
|
x = [] |
|
|
|
for band, stack in zip(x_bands, self.band_convs): |
|
for i, layer in enumerate(stack): |
|
band = layer(band) |
|
band = torch.nn.functional.leaky_relu(band, 0.1) |
|
if i > 0: |
|
fmap.append(band) |
|
x.append(band) |
|
|
|
x = torch.cat(x, dim=-1) |
|
x = self.conv_post(x) |
|
fmap.append(x) |
|
|
|
return x, fmap |
|
|
|
|
|
|
|
|
|
class MultiBandDiscriminator(nn.Module): |
|
def __init__( |
|
self, |
|
h, |
|
): |
|
""" |
|
Multi-band multi-scale STFT discriminator, with the architecture based on https://github.com/descriptinc/descript-audio-codec. |
|
and the modified code adapted from https://github.com/gemelo-ai/vocos. |
|
""" |
|
super().__init__() |
|
|
|
self.fft_sizes = h.get("mbd_fft_sizes", [2048, 1024, 512]) |
|
self.discriminators = nn.ModuleList( |
|
[DiscriminatorB(window_length=w) for w in self.fft_sizes] |
|
) |
|
|
|
def forward( |
|
self, |
|
y: torch.Tensor, |
|
y_hat: torch.Tensor |
|
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]: |
|
|
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
|
|
for d in self.discriminators: |
|
y_d_r, fmap_r = d(x=y) |
|
y_d_g, fmap_g = d(x=y_hat) |
|
y_d_rs.append(y_d_r) |
|
fmap_rs.append(fmap_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
|
|
|
|
class DiscriminatorCQT(nn.Module): |
|
def __init__(self, cfg, hop_length, n_octaves, bins_per_octave): |
|
super().__init__() |
|
self.cfg = cfg |
|
|
|
self.filters = cfg["cqtd_filters"] |
|
self.max_filters = cfg["cqtd_max_filters"] |
|
self.filters_scale = cfg["cqtd_filters_scale"] |
|
self.kernel_size = (3, 9) |
|
self.dilations = cfg["cqtd_dilations"] |
|
self.stride = (1, 2) |
|
|
|
self.in_channels = cfg["cqtd_in_channels"] |
|
self.out_channels = cfg["cqtd_out_channels"] |
|
self.fs = cfg["sampling_rate"] |
|
self.hop_length = hop_length |
|
self.n_octaves = n_octaves |
|
self.bins_per_octave = bins_per_octave |
|
|
|
|
|
from nnAudio import features |
|
self.cqt_transform = features.cqt.CQT2010v2( |
|
sr=self.fs * 2, |
|
hop_length=self.hop_length, |
|
n_bins=self.bins_per_octave * self.n_octaves, |
|
bins_per_octave=self.bins_per_octave, |
|
output_format="Complex", |
|
pad_mode="constant", |
|
) |
|
|
|
self.conv_pres = nn.ModuleList() |
|
for i in range(self.n_octaves): |
|
self.conv_pres.append( |
|
nn.Conv2d( |
|
self.in_channels * 2, |
|
self.in_channels * 2, |
|
kernel_size=self.kernel_size, |
|
padding=self.get_2d_padding(self.kernel_size), |
|
) |
|
) |
|
|
|
self.convs = nn.ModuleList() |
|
|
|
self.convs.append( |
|
nn.Conv2d( |
|
self.in_channels * 2, |
|
self.filters, |
|
kernel_size=self.kernel_size, |
|
padding=self.get_2d_padding(self.kernel_size), |
|
) |
|
) |
|
|
|
in_chs = min(self.filters_scale * self.filters, self.max_filters) |
|
for i, dilation in enumerate(self.dilations): |
|
out_chs = min( |
|
(self.filters_scale ** (i + 1)) * self.filters, self.max_filters |
|
) |
|
self.convs.append( |
|
weight_norm(nn.Conv2d( |
|
in_chs, |
|
out_chs, |
|
kernel_size=self.kernel_size, |
|
stride=self.stride, |
|
dilation=(dilation, 1), |
|
padding=self.get_2d_padding(self.kernel_size, (dilation, 1)), |
|
)) |
|
) |
|
in_chs = out_chs |
|
out_chs = min( |
|
(self.filters_scale ** (len(self.dilations) + 1)) * self.filters, |
|
self.max_filters, |
|
) |
|
self.convs.append( |
|
weight_norm(nn.Conv2d( |
|
in_chs, |
|
out_chs, |
|
kernel_size=(self.kernel_size[0], self.kernel_size[0]), |
|
padding=self.get_2d_padding((self.kernel_size[0], self.kernel_size[0])), |
|
)) |
|
) |
|
|
|
self.conv_post = weight_norm(nn.Conv2d( |
|
out_chs, |
|
self.out_channels, |
|
kernel_size=(self.kernel_size[0], self.kernel_size[0]), |
|
padding=self.get_2d_padding((self.kernel_size[0], self.kernel_size[0])), |
|
)) |
|
|
|
self.activation = torch.nn.LeakyReLU(negative_slope=0.1) |
|
self.resample = Resample(orig_freq=self.fs, new_freq=self.fs * 2) |
|
|
|
self.cqtd_normalize_volume = self.cfg.get("cqtd_normalize_volume", False) |
|
if self.cqtd_normalize_volume: |
|
print(f"INFO: cqtd_normalize_volume set to True. Will apply DC offset removal & peak volume normalization in CQTD!") |
|
|
|
def get_2d_padding( |
|
self, kernel_size: typing.Tuple[int, int], dilation: typing.Tuple[int, int] = (1, 1) |
|
): |
|
return ( |
|
((kernel_size[0] - 1) * dilation[0]) // 2, |
|
((kernel_size[1] - 1) * dilation[1]) // 2, |
|
) |
|
|
|
def forward(self, x): |
|
fmap = [] |
|
|
|
if self.cqtd_normalize_volume: |
|
|
|
x = x - x.mean(dim=-1, keepdims=True) |
|
|
|
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9) |
|
|
|
x = self.resample(x) |
|
|
|
z = self.cqt_transform(x) |
|
|
|
z_amplitude = z[:, :, :, 0].unsqueeze(1) |
|
z_phase = z[:, :, :, 1].unsqueeze(1) |
|
|
|
z = torch.cat([z_amplitude, z_phase], dim=1) |
|
z = torch.permute(z, (0, 1, 3, 2)) |
|
|
|
latent_z = [] |
|
for i in range(self.n_octaves): |
|
latent_z.append( |
|
self.conv_pres[i]( |
|
z[ |
|
:, |
|
:, |
|
:, |
|
i * self.bins_per_octave : (i + 1) * self.bins_per_octave, |
|
] |
|
) |
|
) |
|
latent_z = torch.cat(latent_z, dim=-1) |
|
|
|
for i, l in enumerate(self.convs): |
|
latent_z = l(latent_z) |
|
|
|
latent_z = self.activation(latent_z) |
|
fmap.append(latent_z) |
|
|
|
latent_z = self.conv_post(latent_z) |
|
|
|
return latent_z, fmap |
|
|
|
|
|
class MultiScaleSubbandCQTDiscriminator(nn.Module): |
|
def __init__(self, cfg): |
|
super().__init__() |
|
|
|
self.cfg = cfg |
|
|
|
self.cfg["cqtd_filters"] = self.cfg.get("cqtd_filters", 32) |
|
self.cfg["cqtd_max_filters"] = self.cfg.get("cqtd_max_filters", 1024) |
|
self.cfg["cqtd_filters_scale"] = self.cfg.get("cqtd_filters_scale", 1) |
|
self.cfg["cqtd_dilations"] = self.cfg.get("cqtd_dilations", [1, 2, 4]) |
|
self.cfg["cqtd_in_channels"] = self.cfg.get("cqtd_in_channels", 1) |
|
self.cfg["cqtd_out_channels"] = self.cfg.get("cqtd_out_channels", 1) |
|
|
|
self.cfg["cqtd_hop_lengths"] = self.cfg.get("cqtd_hop_lengths", [512, 256, 256]) |
|
self.cfg["cqtd_n_octaves"] = self.cfg.get("cqtd_n_octaves", [9, 9, 9]) |
|
self.cfg["cqtd_bins_per_octaves"] = self.cfg.get("cqtd_bins_per_octaves", [24, 36, 48]) |
|
|
|
self.discriminators = nn.ModuleList( |
|
[ |
|
DiscriminatorCQT( |
|
self.cfg, |
|
hop_length=self.cfg["cqtd_hop_lengths"][i], |
|
n_octaves=self.cfg["cqtd_n_octaves"][i], |
|
bins_per_octave=self.cfg["cqtd_bins_per_octaves"][i], |
|
) |
|
for i in range(len(self.cfg["cqtd_hop_lengths"])) |
|
] |
|
) |
|
|
|
def forward( |
|
self, |
|
y: torch.Tensor, |
|
y_hat: torch.Tensor |
|
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]: |
|
|
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
|
|
for disc in self.discriminators: |
|
y_d_r, fmap_r = disc(y) |
|
y_d_g, fmap_g = disc(y_hat) |
|
y_d_rs.append(y_d_r) |
|
fmap_rs.append(fmap_r) |
|
y_d_gs.append(y_d_g) |
|
fmap_gs.append(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
class CombinedDiscriminator(nn.Module): |
|
|
|
|
|
def __init__( |
|
self, |
|
list_discriminator: List[nn.Module] |
|
): |
|
super().__init__() |
|
self.discrimiantor = nn.ModuleList(list_discriminator) |
|
|
|
def forward( |
|
self, |
|
y: torch.Tensor, |
|
y_hat: torch.Tensor |
|
) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]]]: |
|
|
|
y_d_rs = [] |
|
y_d_gs = [] |
|
fmap_rs = [] |
|
fmap_gs = [] |
|
|
|
for disc in self.discrimiantor: |
|
y_d_r, y_d_g, fmap_r, fmap_g = disc(y, y_hat) |
|
y_d_rs.extend(y_d_r) |
|
fmap_rs.extend(fmap_r) |
|
y_d_gs.extend(y_d_g) |
|
fmap_gs.extend(fmap_g) |
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |
|
|
|
|
|
|
|
|
|
class MultiScaleMelSpectrogramLoss(nn.Module): |
|
"""Compute distance between mel spectrograms. Can be used |
|
in a multi-scale way. |
|
|
|
Parameters |
|
---------- |
|
n_mels : List[int] |
|
Number of mels per STFT, by default [5, 10, 20, 40, 80, 160, 320], |
|
window_lengths : List[int], optional |
|
Length of each window of each STFT, by default [32, 64, 128, 256, 512, 1024, 2048] |
|
loss_fn : typing.Callable, optional |
|
How to compare each loss, by default nn.L1Loss() |
|
clamp_eps : float, optional |
|
Clamp on the log magnitude, below, by default 1e-5 |
|
mag_weight : float, optional |
|
Weight of raw magnitude portion of loss, by default 0.0 (no ampliciation on mag part) |
|
log_weight : float, optional |
|
Weight of log magnitude portion of loss, by default 1.0 |
|
pow : float, optional |
|
Power to raise magnitude to before taking log, by default 1.0 |
|
weight : float, optional |
|
Weight of this loss, by default 1.0 |
|
match_stride : bool, optional |
|
Whether to match the stride of convolutional layers, by default False |
|
|
|
Implementation copied from: https://github.com/descriptinc/lyrebird-audiotools/blob/961786aa1a9d628cca0c0486e5885a457fe70c1a/audiotools/metrics/spectral.py |
|
Additional code copied and modified from https://github.com/descriptinc/audiotools/blob/master/audiotools/core/audio_signal.py |
|
""" |
|
|
|
def __init__( |
|
self, |
|
sampling_rate: int, |
|
n_mels: List[int] = [5, 10, 20, 40, 80, 160, 320], |
|
window_lengths: List[int] = [32, 64, 128, 256, 512, 1024, 2048], |
|
loss_fn: typing.Callable = nn.L1Loss(), |
|
clamp_eps: float = 1e-5, |
|
mag_weight: float = 0.0, |
|
log_weight: float = 1.0, |
|
pow: float = 1.0, |
|
weight: float = 1.0, |
|
match_stride: bool = False, |
|
mel_fmin: List[float] = [0, 0, 0, 0, 0, 0, 0], |
|
mel_fmax: List[float] = [None, None, None, None, None, None, None], |
|
window_type: str = 'hann', |
|
): |
|
super().__init__() |
|
self.sampling_rate = sampling_rate |
|
|
|
STFTParams = namedtuple( |
|
"STFTParams", |
|
["window_length", "hop_length", "window_type", "match_stride"], |
|
) |
|
|
|
self.stft_params = [ |
|
STFTParams( |
|
window_length=w, |
|
hop_length=w // 4, |
|
match_stride=match_stride, |
|
window_type=window_type, |
|
) |
|
for w in window_lengths |
|
] |
|
self.n_mels = n_mels |
|
self.loss_fn = loss_fn |
|
self.clamp_eps = clamp_eps |
|
self.log_weight = log_weight |
|
self.mag_weight = mag_weight |
|
self.weight = weight |
|
self.mel_fmin = mel_fmin |
|
self.mel_fmax = mel_fmax |
|
self.pow = pow |
|
|
|
@staticmethod |
|
@functools.lru_cache(None) |
|
def get_window( |
|
window_type,window_length, |
|
): |
|
return signal.get_window(window_type, window_length) |
|
|
|
@staticmethod |
|
@functools.lru_cache(None) |
|
def get_mel_filters( |
|
sr, n_fft, n_mels, fmin, fmax |
|
): |
|
return librosa_mel_fn(sr=sr, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax) |
|
|
|
def mel_spectrogram( |
|
self, wav, n_mels, fmin, fmax, window_length, hop_length, match_stride, window_type |
|
): |
|
|
|
|
|
B, C, T = wav.shape |
|
|
|
if match_stride: |
|
assert ( |
|
hop_length == window_length // 4 |
|
), "For match_stride, hop must equal n_fft // 4" |
|
right_pad = math.ceil(T / hop_length) * hop_length - T |
|
pad = (window_length - hop_length) // 2 |
|
else: |
|
right_pad = 0 |
|
pad = 0 |
|
|
|
wav = torch.nn.functional.pad( |
|
wav, (pad, pad + right_pad), mode='reflect' |
|
) |
|
|
|
window = self.get_window(window_type, window_length) |
|
window = torch.from_numpy(window).to(wav.device).float() |
|
|
|
stft = torch.stft( |
|
wav.reshape(-1, T), |
|
n_fft=window_length, |
|
hop_length=hop_length, |
|
window=window, |
|
return_complex=True, |
|
center=True, |
|
) |
|
_, nf, nt = stft.shape |
|
stft = stft.reshape(B, C, nf, nt) |
|
if match_stride: |
|
|
|
|
|
stft = stft[..., 2:-2] |
|
magnitude = torch.abs(stft) |
|
|
|
nf = magnitude.shape[2] |
|
mel_basis = self.get_mel_filters(self.sampling_rate, 2 * (nf - 1), n_mels, fmin, fmax) |
|
mel_basis = torch.from_numpy(mel_basis).to(wav.device) |
|
mel_spectrogram = magnitude.transpose(2, -1) @ mel_basis.T |
|
mel_spectrogram = mel_spectrogram.transpose(-1, 2) |
|
|
|
return mel_spectrogram |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
y: torch.Tensor |
|
) -> torch.Tensor: |
|
"""Computes mel loss between an estimate and a reference |
|
signal. |
|
|
|
Parameters |
|
---------- |
|
x : torch.Tensor |
|
Estimate signal |
|
y : torch.Tensor |
|
Reference signal |
|
|
|
Returns |
|
------- |
|
torch.Tensor |
|
Mel loss. |
|
""" |
|
|
|
loss = 0.0 |
|
for n_mels, fmin, fmax, s in zip( |
|
self.n_mels, self.mel_fmin, self.mel_fmax, self.stft_params |
|
): |
|
kwargs = { |
|
"n_mels": n_mels, |
|
"fmin": fmin, |
|
"fmax": fmax, |
|
"window_length": s.window_length, |
|
"hop_length": s.hop_length, |
|
"match_stride": s.match_stride, |
|
"window_type": s.window_type, |
|
} |
|
|
|
x_mels = self.mel_spectrogram(x, **kwargs) |
|
y_mels = self.mel_spectrogram(y, **kwargs) |
|
x_logmels = torch.log(x_mels.clamp(min=self.clamp_eps).pow(self.pow)) / torch.log(torch.tensor(10.0)) |
|
y_logmels = torch.log(y_mels.clamp(min=self.clamp_eps).pow(self.pow)) / torch.log(torch.tensor(10.0)) |
|
|
|
loss += self.log_weight * self.loss_fn(x_logmels, y_logmels) |
|
loss += self.mag_weight * self.loss_fn(x_logmels, y_logmels) |
|
|
|
return loss |
|
|
|
|
|
|
|
def feature_loss( |
|
fmap_r: List[List[torch.Tensor]], |
|
fmap_g: List[List[torch.Tensor]] |
|
) -> torch.Tensor: |
|
|
|
loss = 0 |
|
for dr, dg in zip(fmap_r, fmap_g): |
|
for rl, gl in zip(dr, dg): |
|
loss += torch.mean(torch.abs(rl - gl)) |
|
|
|
return loss*2 |
|
|
|
def discriminator_loss( |
|
disc_real_outputs: List[torch.Tensor], |
|
disc_generated_outputs: List[torch.Tensor] |
|
) -> Tuple[torch.Tensor, List[torch.Tensor], List[torch.Tensor]]: |
|
|
|
loss = 0 |
|
r_losses = [] |
|
g_losses = [] |
|
for dr, dg in zip(disc_real_outputs, disc_generated_outputs): |
|
r_loss = torch.mean((1-dr)**2) |
|
g_loss = torch.mean(dg**2) |
|
loss += (r_loss + g_loss) |
|
r_losses.append(r_loss.item()) |
|
g_losses.append(g_loss.item()) |
|
|
|
return loss, r_losses, g_losses |
|
|
|
def generator_loss( |
|
disc_outputs: List[torch.Tensor] |
|
) -> Tuple[torch.Tensor, List[torch.Tensor]]: |
|
|
|
loss = 0 |
|
gen_losses = [] |
|
for dg in disc_outputs: |
|
l = torch.mean((1-dg)**2) |
|
gen_losses.append(l) |
|
loss += l |
|
|
|
return loss, gen_losses |