File size: 29,076 Bytes
1606e2d
 
 
 
 
27a1e24
1606e2d
2677efe
1606e2d
 
 
 
 
 
 
 
 
 
 
3f6dbd6
1606e2d
4b2563c
5998d0e
3f6dbd6
 
2677efe
6d0d8ef
ee028b0
2677efe
4d12863
1606e2d
 
 
 
 
4d12863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1606e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f6dbd6
 
 
 
615b503
1606e2d
d66b836
3f6dbd6
 
 
 
 
 
 
 
 
1606e2d
3f6dbd6
 
 
 
 
 
 
 
 
 
 
 
 
1606e2d
3f6dbd6
 
1606e2d
 
3f6dbd6
a584e78
7df1bb1
a584e78
 
3f6dbd6
 
7df1bb1
5a50ff9
1606e2d
 
 
3f6dbd6
7df1bb1
3f6dbd6
1606e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7df1bb1
1606e2d
 
7df1bb1
1606e2d
5a50ff9
1606e2d
 
 
 
 
 
8197e41
4d12863
8197e41
 
 
 
 
5998d0e
1606e2d
 
 
 
bd2dc5f
1606e2d
eff043b
4d12863
1606e2d
d193d40
1606e2d
 
 
 
 
 
3f6dbd6
ee028b0
3f6dbd6
 
 
1cda679
4d12863
3f6dbd6
 
 
1606e2d
 
3f6dbd6
1606e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbca4ce
1606e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1646f5
d193d40
1606e2d
 
 
 
3797680
 
 
 
1606e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b627db5
 
 
 
2677efe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b627db5
2677efe
 
 
 
 
 
7df1bb1
69fb4e6
7df1bb1
69fb4e6
7df1bb1
69fb4e6
7df1bb1
615b503
a0b5cec
 
 
101f7e2
3f6dbd6
 
 
 
7df1bb1
3f6dbd6
69fb4e6
 
3f6dbd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7df1bb1
69fb4e6
7df1bb1
69fb4e6
7df1bb1
69fb4e6
7df1bb1
69fb4e6
 
 
 
 
 
5998d0e
69fb4e6
7df1bb1
 
3f6dbd6
7df1bb1
1dc597e
69fb4e6
7df1bb1
 
 
69fb4e6
7df1bb1
69fb4e6
7df1bb1
 
 
 
 
 
bbca4ce
7df1bb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
661a282
7df1bb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f6dbd6
 
f12ab20
3f6dbd6
 
 
 
 
c3fc0bf
3f6dbd6
 
 
 
 
 
 
 
 
 
 
 
ecc7e3c
3f6dbd6
 
 
 
d47c741
108569e
3f6dbd6
 
316f7d7
a0b5cec
3f6dbd6
 
 
 
 
 
 
 
 
 
 
 
a2921b1
20c459f
c3fc0bf
3f6dbd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f12ab20
3f6dbd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2677efe
3f6dbd6
 
 
 
 
ecc7e3c
3f6dbd6
20c459f
3f6dbd6
 
 
 
 
 
 
 
 
 
 
 
20c459f
3f6dbd6
 
 
 
 
 
2677efe
3f6dbd6
 
 
4d12863
 
3f6dbd6
 
 
 
 
 
 
69fb4e6
1606e2d
3f6dbd6
1606e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
import spaces
import os
import json
import time
import copy
import numpy as np
import torch
import random
from diffusers import AutoPipelineForText2Image, StableDiffusionPipeline,DiffusionPipeline, StableDiffusionXLPipeline, AutoencoderKL, AutoencoderTiny, UNet2DConditionModel
from huggingface_hub import hf_hub_download, snapshot_download
from pathlib import Path
from diffusers import EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, DPMSolverSDEScheduler
from diffusers.models.attention_processor import AttnProcessor2_0
from cryptography.hazmat.primitives.asymmetric import rsa, padding
from cryptography.hazmat.primitives import serialization, hashes
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives.asymmetric import utils
import base64
import json
import ipown
import jwt
import glob
import traceback
from insightface.app import FaceAnalysis
import cv2
import re
import gradio as gr
import uuid
from PIL import Image
MAX_SEED = np.iinfo(np.int32).max
#from onediffx import compile_pipe, save_pipe, load_pipe

HF_TOKEN = os.getenv('HF_TOKEN')
VAR_PUBLIC_KEY = os.getenv('PUBLIC_KEY')
DATASET_ID = 'nsfwalex/checkpoint_n_lora'
scheduler_config = {
    "num_train_timesteps": 1000,
    "beta_start": 0.00085,
    "beta_end": 0.012,
    "beta_schedule": "scaled_linear",
    "set_alpha_to_one": False,
    "steps_offset": 1,
    "prediction_type": "epsilon",
}
samplers = {
    "Euler a": EulerAncestralDiscreteScheduler.from_config(scheduler_config),
    "DPM++ SDE Karras": DPMSolverSDEScheduler.from_config(scheduler_config, use_karras_sigmas=True),
    "DPM2 a": DPMSolverMultistepScheduler.from_config(scheduler_config),
    "DPM++ SDE": DPMSolverSDEScheduler.from_config(scheduler_config),
    "DPM++ 2M SDE": DPMSolverSDEScheduler.from_config(scheduler_config, use_2m=True),
    "DPM++ 2S a": DPMSolverMultistepScheduler.from_config(scheduler_config, use_2s=True)
}

class AuthHelper:
    def load_public_key_from_file(self):
        public_key_bytes = VAR_PUBLIC_KEY.encode('utf-8')  # Convert to bytes if it's a string
        public_key = serialization.load_pem_public_key(
            public_key_bytes,
            backend=default_backend()
        )
        return public_key

    def __init__(self):
        self.public_key = self.load_public_key_from_file()

    # check authkey
    # 1. decode with public key
    # 2. check timestamp
    # 3. check current host, referer, ip it should be the same as values in jwt

    def decode_jwt(self, token, algorithms=["RS256"]):
        """
        Decode and verify a JWT using a public key.
        
        :param public_key: The public key used for verification.
        :param token: The JWT string to decode.
        :param algorithms: List of acceptable algorithms (default is ["RS256"]).
        :return: The decoded JWT payload if verification is successful.
        :raises: Exception if verification fails.
        """
        try:
            # Decode the JWT
            decoded_payload = jwt.decode(
                token,
                self.public_key,
                algorithms=algorithms,
                options={"verify_signature": True}  # Explicitly enable signature verification
            )
            return decoded_payload
        except Exception as e:
            print("Invalid token:", e)
            raise

    import hashlib

    def check_auth(self, request, token):
        # Extract parameters from the request
        if not request or request.query_params.get("_skip_token_passkey", "") == "nsfwaisio_125687":
            return True
        params = dict(request.query_params)
        # Gather request-specific information
        sip = request.client.host
        shost = request.headers.get("Host", "")
        sreferer = request.headers.get("Referer", "")
        suseragent = request.headers.get("User-Agent", "")

        print(sip, shost, sreferer, suseragent)

        # Decode the JWT token
        jwt_data = self.decode_jwt(token)
        jwt_auth = jwt_data.get("auth", "")

        if not jwt_auth:
            raise Exception("Missing auth field in token")

        # Create the MD5 hash of ip + host + referer + useragent
        auth_string = f"{sip}{shost}{sreferer}{suseragent}"
        calculated_md5 = hashlib.md5(auth_string.encode('utf-8')).hexdigest()

        print(f"Calculated MD5: {calculated_md5}, JWT Auth: {jwt_auth}")

        # Compare the calculated hash with the `auth` field from the JWT
        if calculated_md5 == jwt_auth:
            return True

        raise Exception("Invalid authentication")

class InferenceManager:
    def __init__(self, config_path="config.json", ext_model_pathes={}):
        cfg = {}
        with open(config_path, "r", encoding="utf-8") as f:
            cfg = json.load(f)
        self.cfg = cfg
        self.ext_model_pathes = ext_model_pathes
        
        lora_options_path = cfg.get("loras", "")
        self.model_version = cfg["model_version"]
        self.lora_load_options = self.load_json(lora_options_path)  # Load LoRA load options
        self.lora_models = self.load_index_file("index.json")  # Load index.json
        self.preloaded_loras = []  # Array to store preloaded LoRAs with name and weights
        self.ip_adapter_faceid_pipeline = None
        self.base_model_pipeline = self.load_base_model()  # Load the base model
        
        self.preload_loras()  # Preload LoRAs based on options

    def load_json(self, filepath):
        """Load JSON file into a dictionary."""
        if os.path.exists(filepath):
            with open(filepath, "r", encoding="utf-8") as f:
                return json.load(f)
        return {}

    def load_index_file(self, index_file):
        """Download index.json from Hugging Face and return the file path."""
        index_path = download_from_hf(index_file)
        if index_path:
            with open(index_path, "r", encoding="utf-8") as f:
                return json.load(f)
        return {}

    @spaces.GPU(duration=40)
    def compile_onediff(self):
        self.base_model_pipeline.to("cuda")
        pipe = self.base_model_pipeline
        # load the compiled pipe
        load_pipe(pipe, dir="cached_pipe")
        print("Start oneflow compiling...")
        start_compile = time.time()
        pipe = compile_pipe(pipe)
        # run once to trigger compilation
        image = pipe(
            prompt="street style, detailed, raw photo, woman, face, shot on CineStill 800T",
            height=512,
            width=512,
            num_inference_steps=10,
            output_type="pil",
        ).images
        image[0].save(f"test_image.png")
        compile_time = time.time() - start_compile
        #self.base_model_pipeline.to("cpu")
        # save the compiled pipe
        save_pipe(pipe, dir="cached_pipe")
        self.base_model_pipeline = pipe
        print(f"OneDiff compile in {compile_time}s")
    
    def load_base_model(self):
        """Load base model and return the pipeline."""
        start = time.time()
        cfg = self.cfg

        model_version = self.model_version
        ckpt_dir = snapshot_download(repo_id=cfg["model_id"], local_files_only=False)

        if model_version == "1.5":
            vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), torch_dtype=torch.bfloat16)
            pipe = StableDiffusionPipeline.from_pretrained(ckpt_dir, vae=vae, torch_dtype=torch.bfloat16, use_safetensors=True)
        else:
            use_vae = cfg.get("vae", "")
            if not use_vae or True:#!TEST! default vae for test
                vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), torch_dtype=torch.bfloat16)
            elif use_vae == "tae":
                vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.bfloat16)
            else:
                vae = AutoencoderTiny.from_pretrained(use_vae, torch_dtype=torch.bfloat16)
            print(ckpt_dir)
            pipe = DiffusionPipeline.from_pretrained(
                ckpt_dir,
                vae=vae,
                #unet=unet,
                torch_dtype=torch.bfloat16,
                use_safetensors=True,
                #variant="fp16",
                custom_pipeline   = "lpw_stable_diffusion_xl",
            )
            #pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
            clip_skip = cfg.get("clip_skip", 1)
            # Adjust clip skip for XL (assumed not relevant for SD 1.5)
            pipe.text_encoder.config.num_hidden_layers -= (clip_skip - 1)
        
        load_time = round(time.time() - start, 2)
        print(f"Base model loaded in {load_time}s")

        if cfg.get("load_ip_adapter_faceid", False):
            if model_version in ("pony", "xl"):
                ip_ckpt = self.ext_model_pathes.get("ip-adapter-faceid-sdxl", "")
                if ip_ckpt:
                    print(f"loading ip adapter model...")
                    self.ip_adapter_faceid_pipeline = ipown.IPAdapterFaceIDXL(pipe, ip_ckpt, 'cuda', torch_dtype=torch.bfloat16)
                else:
                    print("ip-adapter-faceid-sdxl not found, skip")            

        return pipe


    def preload_loras(self):
        """Preload all LoRAs marked as 'preload=True' and store for later use."""
        for lora_name, lora_info in self.lora_load_options.items():
            try:
                start = time.time()

                # Find the corresponding LoRA in index.json
                lora_index_info = next((l for l in self.lora_models['lora'] if l['name'] == lora_name), None)
                if not lora_index_info:
                    raise ValueError(f"LoRA {lora_name} not found in index.json.")

                # Check if the LoRA base model matches the current model version
                if self.model_version not in lora_info['base_model'] or not lora_info.get('preload', False):
                    print(f"Skipping {lora_name} as it's not compatible with the current model version.")
                    continue

                # Load LoRA weights from the specified path
                weight_path = download_from_hf(lora_index_info['path'], local_dir=None)
                if not weight_path:
                    raise ValueError(f"Failed to download LoRA weights for {lora_name}")
                load_time = round(time.time() - start, 2)
                print(f"Downloaded {lora_name} in {load_time}s")
                self.base_model_pipeline.load_lora_weights(
                    weight_path,
                    weight_name=lora_index_info["path"],
                    adapter_name=lora_name
                )

                # Store the preloaded LoRA name and weight for merging later
                if lora_info.get("preload", False):
                    self.preloaded_loras.append({
                        "name": lora_name,
                        "weight": lora_info.get("weight", 1.0)
                    })
                    load_time = round(time.time() - start, 2)
                    print(f"Preloaded LoRA {lora_name} with weight {lora_info.get('weight', 1.0)} in {load_time}s.")
            except Exception as e:
                print(f"Lora {lora_name} not loaded, skipping... {e}")

    def build_pipeline_with_lora(self, lora_list, sampler=None, new_pipeline=False):
        """Build the pipeline with specific LoRAs, loading any that are not preloaded."""
        # Deep copy the base pipeline
        start = time.time()
        if new_pipeline:
            temp_pipeline = copy.deepcopy(self.base_model_pipeline)
        else:
            temp_pipeline = self.base_model_pipeline
        copy_time = round(time.time() - start, 2)
        print(f"pipeline copied in {copy_time}s")
        # Track LoRAs to be loaded dynamically
        dynamic_loras = []

        # Check if any LoRAs in lora_list need to be loaded dynamically
        for lora_name in lora_list:
            if not any(l['name'] == lora_name for l in self.preloaded_loras):
                lora_info = next((l for l in self.lora_models['lora'] if l['name'] == lora_name), None)
                if lora_info and self.model_version in lora_info["attr"].get("base_model", []):
                    dynamic_loras.append({
                        "name": lora_name,
                        "filename": lora_info["path"],
                        "scale": 1.0  # Assuming default weight as 1.0 for dynamic LoRAs
                    })

        # Fuse preloaded and dynamic LoRAs
        all_loras = [{"name": x["name"], "scale": x["weight"], "preloaded": True} for x in self.preloaded_loras] + dynamic_loras
        set_lora_weights(temp_pipeline, all_loras,False)

        build_time = round(time.time() - start, 2)
        print(f"Pipeline built with LoRAs in {build_time}s.")
        if not sampler:
            sampler = self.cfg.get("sampler", "Euler a")
        # Define samplers
        samplers = {
            "Euler a": EulerAncestralDiscreteScheduler.from_config(temp_pipeline.scheduler.config),
            "DPM++ SDE Karras": DPMSolverSDEScheduler.from_config(temp_pipeline.scheduler.config, use_karras_sigmas=True),
            "DPM2 a": DPMSolverMultistepScheduler.from_config(temp_pipeline.scheduler.config),
            "DPM++ SDE": DPMSolverSDEScheduler.from_config(temp_pipeline.scheduler.config),
            "DPM++ 2M SDE": DPMSolverSDEScheduler.from_config(temp_pipeline.scheduler.config, use_2m=True),
            "DPM++ 2S a": DPMSolverMultistepScheduler.from_config(temp_pipeline.scheduler.config, use_2s=True)
        }
        
        # Set the scheduler based on the selected sampler
        temp_pipeline.scheduler = samplers[sampler]

        # Move the final pipeline to the GPU
        temp_pipeline
        return temp_pipeline

    def release(self, temp_pipeline):
        """Release the deepcopied pipeline to recycle memory."""
        del temp_pipeline
        torch.cuda.empty_cache()
        print("Memory released and cache cleared.")

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


child_related_regex = re.compile(
    r'(child|children|kid|kids|baby|babies|toddler|infant|juvenile|minor|underage|preteen|adolescent|youngster|youth|son|daughter|young|kindergarten|preschool|'
    r'([1-9]|1[0-7])[\s_\-|\.\,]*year(s)?[\s_\-|\.\,]*old|'  # Matches 1 to 17 years old with various separators
    r'little|small|tiny|short|young|new[\s_\-|\.\,]*born[\s_\-|\.\,]*(boy|girl|male|man|bro|brother|sis|sister))',
    re.IGNORECASE
)

# Function to remove child-related content from a prompt
def remove_child_related_content(prompt):
    cleaned_prompt = re.sub(child_related_regex, '', prompt)
    return cleaned_prompt.strip()

# Function to check if a prompt contains child-related content
def contains_child_related_content(prompt):
    if child_related_regex.search(prompt):
        return True
    return False

def save_image(img):
    path = "./tmp/"
    # Ensure the Hugging Face path exists locally
    if not os.path.exists(path):
        os.makedirs(path)
    # Generate a unique filename
    unique_name = str(uuid.uuid4()) + ".webp"
    unique_name = os.path.join(path, unique_name)
    
    # Convert the image to WebP format
    webp_img = img.convert("RGB")  # Ensure the image is in RGB mode
    
    # Save the image in WebP format with high quality
    webp_img.save(unique_name, "WEBP", quality=90)
    
    # Open the saved WebP file and return it as a PIL Image object
    with Image.open(unique_name) as webp_file:
        webp_image = webp_file.copy()
    
    return webp_image, unique_name

class ModelManager:
    def __init__(self, model_directory):
        """
        Initialize the ModelManager by scanning all `.model.json` files in the given directory.

        :param model_directory: The directory to scan for model config files (e.g., "/path/to/models").
        """
        print("downloading models")
        print("loading face analysis...")
        self.app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
        self.app.prepare(ctx_id=0, det_size=(512, 512))
        #download_from_hf()
        self.ext_model_pathes = {
            "ip-adapter-faceid-sdxl": hf_hub_download(repo_id="h94/IP-Adapter-FaceID", filename="ip-adapter-faceid_sdxl.bin", repo_type="model")
        }

        self.models = {}
        self.ext_models = {}
        self.model_directory = model_directory
        self.load_models()
        
    #not enabled at the moment
    def load_instant_x(self):
        #load all models
        hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/config.json", local_dir="./checkpoints")
        hf_hub_download(repo_id="InstantX/InstantID", filename="ControlNetModel/diffusion_pytorch_model.safetensors", local_dir="./checkpoints")
        hf_hub_download(repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="./checkpoints")
        os.makedirs("./models",exist_ok=True)
        download_from_hf("models/antelopev2/1k3d68.onnx",local_dir="./models")
        download_from_hf("models/antelopev2/2d106det.onnx",local_dir="./models")
        download_from_hf("models/antelopev2/genderage.onnx",local_dir="./models")
        download_from_hf("models/antelopev2/glintr100.onnx",local_dir="./models")
        download_from_hf("models/antelopev2/scrfd_10g_bnkps.onnx",local_dir="./models")
        
        # prepare 'antelopev2' under ./models
        app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
        app.prepare(ctx_id=0, det_size=(640, 640))

        # prepare models under ./checkpoints
        face_adapter = f'./checkpoints/ip-adapter.bin'
        controlnet_path = f'./checkpoints/ControlNetModel'

    def load_models(self):
        """
        Scan the model directory for `.model.json` files and initialize InferenceManager instances for each one.

        :param model_directory: Directory to scan for `.model.json` files.
        """
        model_files = glob.glob(os.path.join(self.model_directory, "*.model.json"))
        if not model_files:
            print(f"No model configuration files found in {self.model_directory}")
            return

        for file_path in model_files:
            model_name = self.get_model_name_from_url(file_path).split(".")[0]
            print(f"Initializing model: {model_name} from {file_path}")
            try:
                # Initialize InferenceManager for each model
                self.models[model_name] = InferenceManager(config_path=file_path, ext_model_pathes=self.ext_model_pathes)
            except Exception as e:
                print(traceback.format_exc())
                print(f"Failed to initialize model {model_name} from {file_path}: {e}")

    def get_model_name_from_url(self, url):
        """
        Extract the model name from the config file path (filename without extension).

        :param url: The file path of the configuration file.
        :return: The model name (file name without extension).
        """
        filename = os.path.basename(url)
        model_name, _ = os.path.splitext(filename)
        return model_name

    def get_model_pipeline(self, model_id, lora_list, sampler=None, new_pipeline=False):
        """
        Build the pipeline with specific LoRAs for a model.

        :param model_id: The model ID (the model name extracted from the config URL).
        :param lora_list: List of LoRAs to be applied to the model pipeline.
        :param sampler: The sampler to be used for the pipeline.
        :param new_pipeline: Flag to indicate whether to create a new pipeline or reuse the existing one.
        :return: The built pipeline with LoRAs applied.
        """
        model = self.models.get(model_id)
        if not model:
            print(f"Model {model_id} not found.")
            return None
        try:
            print(f"Building pipeline with LoRAs for model {model_id}...")
            return model.build_pipeline_with_lora(lora_list, sampler, new_pipeline)
        except Exception as e:
            print(traceback.format_exc())
            print(f"Failed to build pipeline for model {model_id}: {e}")
            return None

    def release_model(self, model_id):
        """
        Release resources and clear memory for a specific model.

        :param model_id: The model ID (the model name extracted from the config URL).
        """
        model = self.models.get(model_id)
        if not model:
            print(f"Model {model_id} not found.")
            return
        try:
            print(f"Releasing model {model_id}...")
            model.release(model.base_model_pipeline)
        except Exception as e:
            print(f"Failed to release model {model_id}: {e}")

    @spaces.GPU(duration=40)
    def generate_with_faceid(self, model_id, inference_params, progress=gr.Progress(track_tqdm=True)):
        model = self.models.get(model_id)
        if not model:
            raise Exception(f"invalid model_id {model_id}")
        if not model.ip_adapter_faceid_pipeline:
            raise Exception(f"model does not support ip adapter")
        ip_model = model.ip_adapter_faceid_pipeline
        cfg = model.cfg
        p = inference_params.get("prompt")
        negative_prompt = inference_params.get("negative_prompt", cfg.get("negative_prompt", ""))
        steps = inference_params.get("steps", cfg.get("inference_steps", 30))
        guidance_scale = inference_params.get("guidance_scale", cfg.get("guidance_scale", 7))
        width = inference_params.get("width", cfg.get("width", 512))
        height = inference_params.get("height", cfg.get("height", 512))
        images = inference_params.get("images", [])
        likeness_strength = inference_params.get("likeness_strength", 0.4)
        face_strength = inference_params.get("face_strength", 0.1)
        sampler = inference_params.get("sampler", cfg.get("sampler", ""))
        lora_list = inference_params.get("loras", [])
        seed = inference_params.get("seed", 0)

        if not images:
            raise Exception(f"face images not provided")
        start = time.time()
        model.base_model_pipeline.to("cuda")
        print("extracting face...")
        faceid_all_embeds = []
        for image in images:
            face = image#cv2.imread(image)
            faces = self.app.get(face)
            faceid_embed = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
            faceid_all_embeds.append(faceid_embed)

        average_embedding = torch.mean(torch.stack(faceid_all_embeds, dim=0), dim=0)

        print("start inference...")
        style_selection = ""
        use_negative_prompt = True
        randomize_seed = True
        seed = seed or int(randomize_seed_fn(seed, randomize_seed))
        p = remove_child_related_content(p)
        prompt_str = cfg.get("prompt", "{prompt}").replace("{prompt}", p)
        generator = torch.Generator(model.base_model_pipeline.device).manual_seed(seed)
        print(f"generate: p={p}, np={negative_prompt}, steps={steps}, guidance_scale={guidance_scale}, size={width},{height}, seed={seed}")
        images = ip_model.generate(
            prompt=prompt_str,
            negative_prompt=negative_prompt,
            faceid_embeds=average_embedding,
            scale=likeness_strength,
            width=width,
            height=height,
            guidance_scale=face_strength,
            num_inference_steps=steps,
            generator=generator,
            num_images_per_prompt=1,
            output_type="pil",
            #callback_on_step_end=callback_dynamic_cfg,
            #callback_on_step_end_tensor_inputs=['prompt_embeds', 'add_text_embeds', 'add_time_ids'],
        ).images
        cost = round(time.time() - start, 2)
        print(f"inference done in {cost}s")
        images = [save_image(img) for img in images]
        image_paths = [i[1] for i in images]
        print(prompt_str, image_paths)
        return [i[0] for i in images]

    @spaces.GPU(duration=40)
    def generate(self, model_id, inference_params, progress=gr.Progress(track_tqdm=True)):
        def callback_dynamic_cfg(pipe, step_index, timestep, callback_kwargs):
            cfg_disabling_at = cfg.get('cfg_disabling_rate', 0.75)
            if step_index == int(pipe.num_timesteps * cfg_disabling_at):
                callback_kwargs['prompt_embeds'] = callback_kwargs['prompt_embeds'].chunk(2)[-1]
                callback_kwargs['add_text_embeds'] = callback_kwargs['add_text_embeds'].chunk(2)[-1]
                callback_kwargs['add_time_ids'] = callback_kwargs['add_time_ids'].chunk(2)[-1]
                pipe._guidance_scale = 0.0

            return callback_kwargs
        model = self.models.get(model_id)
        if not model:
            raise Exception(f"invalid model_id {model_id}")
        
        cfg = model.cfg
        p = inference_params.get("prompt")
        negative_prompt = inference_params.get("negative_prompt", cfg.get("negative_prompt", ""))
        steps = inference_params.get("steps", cfg.get("inference_steps", 30))
        guidance_scale = inference_params.get("guidance_scale", cfg.get("guidance_scale", 7))
        width = inference_params.get("width", cfg.get("width", 512))
        height = inference_params.get("height", cfg.get("height", 512))
        sampler = inference_params.get("sampler", cfg.get("sampler", ""))
        lora_list = inference_params.get("loras", [])
        seed = inference_params.get("seed", 0)

        pipe = model.build_pipeline_with_lora(lora_list, sampler)

        start = time.time()
        pipe.to("cuda")
        print("start inference...")
        style_selection = ""
        use_negative_prompt = True
        randomize_seed = True
        seed = seed or int(randomize_seed_fn(seed, randomize_seed))
        guidance_scale = guidance_scale or cfg.get("guidance_scale", 7.5)
        p = remove_child_related_content(p)
        prompt_str = cfg.get("prompt", "{prompt}").replace("{prompt}", p)
        generator = torch.Generator(pipe.device).manual_seed(seed)
        print(f"generate: p={p}, np={negative_prompt}, steps={steps}, guidance_scale={guidance_scale}, size={width},{height}, seed={seed}")
        images = pipe(
            prompt=prompt_str,
            negative_prompt=negative_prompt,
            width=width,
            height=height,
            guidance_scale=guidance_scale,
            num_inference_steps=steps,
            generator=generator,
            num_images_per_prompt=1,
            output_type="pil",
            #callback_on_step_end=callback_dynamic_cfg,
            #callback_on_step_end_tensor_inputs=['prompt_embeds', 'add_text_embeds', 'add_time_ids'],
        ).images
        cost = round(time.time() - start, 2)
        print(f"inference done in {cost}s")
        images = [save_image(img) for img in images]
        image_paths = [i[1] for i in images]
        print(prompt_str, image_paths)
        return [i[0] for i in images]
            
# Hugging Face file download function - returns only file path
def download_from_hf(filename, local_dir=None, repo_id=DATASET_ID, repo_type="dataset"):
    try:
        file_path = hf_hub_download(
            filename=filename,
            repo_id=DATASET_ID,
            repo_type="dataset",
            revision="main",
            local_dir=local_dir,
            local_files_only=False,  # Attempt to load from cache if available
        )
        return file_path  # Return file path only
    except Exception as e:
        print(f"Failed to load {filename} from Hugging Face: {str(e)}")
        return None


# Function to load and fuse LoRAs
def set_lora_weights(pipe, lorajson: list[dict], fuse=False):
    try:
        if not lorajson or not isinstance(lorajson, list):
            return

        a_list = []
        w_list = []
        for d in lorajson:
            if not d or not isinstance(d, dict) or not d["name"] or d["name"] == "None":
                continue

            k = d["name"]
            if not d.get("preloaded", False):
                start = time.time()
                weight_path = download_from_hf(d['filename'], local_dir=None)
                if weight_path:
                    pipe.load_lora_weights(weight_path, weight_name=d['filename'], adapter_name=k)

                load_time = round(time.time() - start, 2)
                print(f"LoRA {k} loaded in {load_time}s.")

            a_list.append(k)
            w_list.append(d["scale"])

        if not a_list:
            return

        start = time.time()
        pipe.set_adapters(a_list, adapter_weights=w_list)
        if fuse:
            pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
        fuse_time = round(time.time() - start, 2)
        print(f"LoRAs fused in {fuse_time}s.")
    except Exception as e:
        print(f"External LoRA Error: {e}")
        raise Exception(f"External LoRA Error: {e}") from e