nsfwalex commited on
Commit
5998d0e
·
verified ·
1 Parent(s): 5a50ff9

Update inference_manager.py

Browse files
Files changed (1) hide show
  1. inference_manager.py +4 -2
inference_manager.py CHANGED
@@ -18,6 +18,7 @@ import base64
18
  import json
19
  import jwt
20
  import glob
 
21
 
22
  #from onediffx import compile_pipe, save_pipe, load_pipe
23
 
@@ -153,7 +154,7 @@ class InferenceManager:
153
 
154
  #vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), torch_dtype=torch.bfloat16)
155
  vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.bfloat16)
156
-
157
  pipe = DiffusionPipeline.from_pretrained(
158
  ckpt_dir,
159
  vae=vae,
@@ -287,7 +288,7 @@ class ModelManager:
287
  return
288
 
289
  for file_path in model_files:
290
- model_name = self.get_model_name_from_url(file_path)
291
  print(f"Initializing model: {model_name} from {file_path}")
292
  try:
293
  # Initialize InferenceManager for each model
@@ -324,6 +325,7 @@ class ModelManager:
324
  print(f"Building pipeline with LoRAs for model {model_id}...")
325
  return model.build_pipeline_with_lora(lora_list, sampler, new_pipeline)
326
  except Exception as e:
 
327
  print(f"Failed to build pipeline for model {model_id}: {e}")
328
  return None
329
 
 
18
  import json
19
  import jwt
20
  import glob
21
+ import traceback
22
 
23
  #from onediffx import compile_pipe, save_pipe, load_pipe
24
 
 
154
 
155
  #vae = AutoencoderKL.from_pretrained(os.path.join(ckpt_dir, "vae"), torch_dtype=torch.bfloat16)
156
  vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.bfloat16)
157
+ print(ckpt_dir)
158
  pipe = DiffusionPipeline.from_pretrained(
159
  ckpt_dir,
160
  vae=vae,
 
288
  return
289
 
290
  for file_path in model_files:
291
+ model_name = self.get_model_name_from_url(file_path).split(".")[0]
292
  print(f"Initializing model: {model_name} from {file_path}")
293
  try:
294
  # Initialize InferenceManager for each model
 
325
  print(f"Building pipeline with LoRAs for model {model_id}...")
326
  return model.build_pipeline_with_lora(lora_list, sampler, new_pipeline)
327
  except Exception as e:
328
+ traceback.print_exc()
329
  print(f"Failed to build pipeline for model {model_id}: {e}")
330
  return None
331