Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
""" | |
Mostly copy-paste from timm library. | |
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
""" | |
from typing import Optional | |
import math | |
from functools import partial | |
import torch | |
import torch.nn as nn | |
def _no_grad_trunc_normal_(tensor, mean, std, a, b): | |
# Cut & paste from PyTorch official master until it's in a few official releases - RW | |
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | |
def norm_cdf(x): | |
# Computes standard normal cumulative distribution function | |
return (1. + math.erf(x / math.sqrt(2.))) / 2. | |
if (mean < a - 2 * std) or (mean > b + 2 * std): | |
warnings.warn( | |
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. The distribution of values may be incorrect.", | |
stacklevel=2 | |
) | |
with torch.no_grad(): | |
# Values are generated by using a truncated uniform distribution and | |
# then using the inverse CDF for the normal distribution. | |
# Get upper and lower cdf values | |
l = norm_cdf((a - mean) / std) | |
u = norm_cdf((b - mean) / std) | |
# Uniformly fill tensor with values from [l, u], then translate to | |
# [2l-1, 2u-1]. | |
tensor.uniform_(2 * l - 1, 2 * u - 1) | |
# Use inverse cdf transform for normal distribution to get truncated | |
# standard normal | |
tensor.erfinv_() | |
# Transform to proper mean, std | |
tensor.mul_(std * math.sqrt(2.)) | |
tensor.add_(mean) | |
# Clamp to ensure it's in the proper range | |
tensor.clamp_(min=a, max=b) | |
return tensor | |
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): | |
# type: (Tensor, float, float, float, float) -> Tensor | |
return _no_grad_trunc_normal_(tensor, mean, std, a, b) | |
def drop_path(x, drop_prob: float = 0., training: bool = False): | |
if drop_prob == 0. or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) | |
random_tensor.floor_() # binarize | |
output = x.div(keep_prob) * random_tensor | |
return output | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training) | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 # square root of dimension for normalisation | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, N, C = x.shape # B x (cls token + # patch tokens) x dim | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
# qkv: 3 x B x Nh x (cls token + # patch tokens) x (dim // Nh) | |
q, k, v = qkv[0], qkv[1], qkv[2] | |
# q, k, v: B x Nh x (cls token + # patch tokens) x (dim // Nh) | |
# q: B x Nh x (cls token + # patch tokens) x (dim // Nh) | |
# k.transpose(-2, -1) = B x Nh x (dim // Nh) x (cls token + # patch tokens) | |
# attn: B x Nh x (cls token + # patch tokens) x (cls token + # patch tokens) | |
attn = (q @ k.transpose(-2, -1)) * self.scale # @ operator is for matrix multiplication | |
attn = attn.softmax(dim=-1) # B x Nh x (cls token + # patch tokens) x (cls token + # patch tokens) | |
attn = self.attn_drop(attn) | |
# attn = B x Nh x (cls token + # patch tokens) x (cls token + # patch tokens) | |
# v = B x Nh x (cls token + # patch tokens) x (dim // Nh) | |
# attn @ v = B x Nh x (cls token + # patch tokens) x (dim // Nh) | |
# (attn @ v).transpose(1, 2) = B x (cls token + # patch tokens) x Nh x (dim // Nh) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) # B x (cls token + # patch tokens) x dim | |
x = self.proj(x) # B x (cls token + # patch tokens) x dim | |
x = self.proj_drop(x) | |
return x, attn | |
class Block(nn.Module): | |
def __init__(self, | |
dim, num_heads, | |
mlp_ratio=4., | |
qkv_bias=False, | |
qk_scale=None, | |
drop=0., | |
attn_drop=0., | |
drop_path=0., | |
act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
attn_drop=attn_drop, | |
proj_drop=drop | |
) | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
def forward(self, x, return_attention=False): | |
y, attn = self.attn(self.norm1(x)) | |
if return_attention: | |
return attn | |
x = x + self.drop_path(y) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class PatchEmbed(nn.Module): | |
""" Image to Patch Embedding""" | |
def __init__(self, img_size=(224, 224), patch_size=16, in_chans=3, embed_dim=768): | |
super().__init__() | |
num_patches = (img_size[0] // patch_size) * (img_size[1] // patch_size) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.num_patches = num_patches | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
def forward(self, x): | |
B, C, H, W = x.shape | |
x = self.proj(x) | |
x = x.flatten(2).transpose(1, 2) # B x (P_H * P_W) x C | |
return x | |
class VisionTransformer(nn.Module): | |
""" Vision Transformer """ | |
def __init__(self, | |
img_size=(224, 224), | |
patch_size=16, | |
in_chans=3, | |
num_classes=0, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4., | |
qkv_bias=False, | |
qk_scale=None, | |
drop_rate=0., | |
attn_drop_rate=0., | |
drop_path_rate=0., | |
norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.num_features = self.embed_dim = embed_dim | |
self.patch_embed = PatchEmbed( | |
img_size=(224, 224), # noel: this is to load pretrained model. | |
patch_size=patch_size, | |
in_chans=in_chans, | |
embed_dim=embed_dim | |
) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
self.blocks = nn.ModuleList([ | |
Block( | |
dim=embed_dim, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[i], | |
norm_layer=norm_layer | |
) for i in range(depth)]) | |
self.norm = norm_layer(embed_dim) | |
# Classifier head | |
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
trunc_normal_(self.pos_embed, std=.02) | |
trunc_normal_(self.cls_token, std=.02) | |
self.apply(self._init_weights) | |
self.depth = depth | |
self.embed_dim = self.n_embs = embed_dim | |
self.mlp_ratio = mlp_ratio | |
self.n_heads = num_heads | |
self.patch_size = patch_size | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def make_input_divisible(self, x: torch.Tensor) -> torch.Tensor: | |
"""Pad some pixels to make the input size divisible by the patch size.""" | |
B, _, H_0, W_0 = x.shape | |
pad_w = (self.patch_size - W_0 % self.patch_size) % self.patch_size | |
pad_h = (self.patch_size - H_0 % self.patch_size) % self.patch_size | |
x = nn.functional.pad(x, (0, pad_w, 0, pad_h), value=0) | |
return x | |
def prepare_tokens(self, x): | |
B, nc, h, w = x.shape | |
x: torch.Tensor = self.make_input_divisible(x) | |
patch_embed_h, patch_embed_w = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size | |
x = self.patch_embed(x) # patch linear embedding | |
# add positional encoding to each token | |
# add the [CLS] token to the embed patch tokens | |
cls_tokens = self.cls_token.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
x = x + self.interpolate_pos_encoding(x, self.pos_embed, size=(patch_embed_h, patch_embed_w)) | |
return self.pos_drop(x) | |
def split_token(x, token_type: str): | |
if token_type == "cls": | |
return x[:, 0, :] | |
elif token_type == "patch": | |
return x[:, 1:, :] | |
else: | |
return x | |
# noel | |
def forward(self, x, layer: Optional[str] = None): | |
x: torch.Tensor = self.prepare_tokens(x) | |
features: dict = {} | |
for i, blk in enumerate(self.blocks): | |
x = blk(x) | |
features[f"layer{i + 1}"] = self.norm(x) | |
if layer is not None: | |
return features[layer] | |
else: | |
return features | |
# noel - for DINO's visual | |
def get_last_selfattention(self, x): | |
x = self.prepare_tokens(x) | |
for i, blk in enumerate(self.blocks): | |
if i < len(self.blocks) - 1: | |
x = blk(x) | |
else: | |
# return attention of the last block | |
return blk(x, return_attention=True) | |
def get_tokens( | |
self, | |
x, | |
layers: list, | |
patch_tokens: bool = False, | |
norm: bool = True, | |
input_tokens: bool = False, | |
post_pe: bool = False | |
): | |
"""Return intermediate tokens.""" | |
list_tokens: list = [] | |
B = x.shape[0] | |
x = self.patch_embed(x) | |
cls_tokens = self.cls_token.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
if input_tokens: | |
list_tokens.append(x) | |
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed) | |
x = x + pos_embed | |
if post_pe: | |
list_tokens.append(x) | |
x = self.pos_drop(x) | |
for i, blk in enumerate(self.blocks): | |
x = blk(x) # B x # patches x dim | |
if layers is None or i in layers: | |
list_tokens.append(self.norm(x) if norm else x) | |
tokens = torch.stack(list_tokens, dim=1) # B x n_layers x (1 + # patches) x dim | |
if not patch_tokens: | |
return tokens[:, :, 0, :] # index [CLS] tokens only, B x n_layers x dim | |
else: | |
return tokens | |
def forward_features(self, x): | |
B = x.shape[0] | |
x = self.patch_embed(x) | |
cls_tokens = self.cls_token.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed) | |
x = x + pos_embed | |
x = self.pos_drop(x) | |
for blk in self.blocks: | |
x = blk(x) | |
if self.norm is not None: | |
x = self.norm(x) | |
return x[:, 0] | |
def interpolate_pos_encoding(self, x, pos_embed, size): | |
"""Interpolate the learnable positional encoding to match the number of patches. | |
x: B x (1 + N patches) x dim_embedding | |
pos_embed: B x (1 + N patches) x dim_embedding | |
return interpolated positional embedding | |
""" | |
npatch = x.shape[1] - 1 # (H // patch_size * W // patch_size) | |
N = pos_embed.shape[1] - 1 # 784 (= 28 x 28) | |
if npatch == N: | |
return pos_embed | |
class_emb, pos_embed = pos_embed[:, 0], pos_embed[:, 1:] # a learnable CLS token, learnable position embeddings | |
dim = x.shape[-1] # dimension of embeddings | |
pos_embed = nn.functional.interpolate( | |
pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), # B x dim x 28 x 28 | |
size=size, | |
mode='bicubic', | |
align_corners=False | |
) | |
pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | |
pos_embed = torch.cat((class_emb.unsqueeze(0), pos_embed), dim=1) | |
return pos_embed | |
def forward_selfattention(self, x, return_interm_attn=False): | |
B, nc, w, h = x.shape | |
N = self.pos_embed.shape[1] - 1 | |
x = self.patch_embed(x) | |
# interpolate patch embeddings | |
dim = x.shape[-1] | |
w0 = w // self.patch_embed.patch_size | |
h0 = h // self.patch_embed.patch_size | |
class_pos_embed = self.pos_embed[:, 0] | |
patch_pos_embed = self.pos_embed[:, 1:] | |
patch_pos_embed = nn.functional.interpolate( | |
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), | |
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)), | |
mode='bicubic' | |
) | |
if w0 != patch_pos_embed.shape[-2]: | |
helper = torch.zeros(h0)[None, None, None, :].repeat(1, dim, w0 - patch_pos_embed.shape[-2], 1).to(x.device) | |
patch_pos_embed = torch.cat((patch_pos_embed, helper), dim=-2) | |
if h0 != patch_pos_embed.shape[-1]: | |
helper = torch.zeros(w0)[None, None, :, None].repeat(1, dim, 1, h0 - patch_pos_embed.shape[-1]).to(x.device) | |
pos_embed = torch.cat((patch_pos_embed, helper), dim=-1) | |
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | |
pos_embed = torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) | |
cls_tokens = self.cls_token.expand(B, -1, -1) # self.cls_token: 1 x 1 x emb_dim -> ? | |
x = torch.cat((cls_tokens, x), dim=1) | |
x = x + pos_embed | |
x = self.pos_drop(x) | |
if return_interm_attn: | |
list_attn = [] | |
for i, blk in enumerate(self.blocks): | |
attn = blk(x, return_attention=True) | |
x = blk(x) | |
list_attn.append(attn) | |
return torch.cat(list_attn, dim=0) | |
else: | |
for i, blk in enumerate(self.blocks): | |
if i < len(self.blocks) - 1: | |
x = blk(x) | |
else: | |
return blk(x, return_attention=True) | |
def forward_return_n_last_blocks(self, x, n=1, return_patch_avgpool=False): | |
B = x.shape[0] | |
x = self.patch_embed(x) | |
cls_tokens = self.cls_token.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed) | |
x = x + pos_embed | |
x = self.pos_drop(x) | |
# we will return the [CLS] tokens from the `n` last blocks | |
output = [] | |
for i, blk in enumerate(self.blocks): | |
x = blk(x) | |
if len(self.blocks) - i <= n: | |
# get only CLS token (B x dim) | |
output.append(self.norm(x)[:, 0]) | |
if return_patch_avgpool: | |
x = self.norm(x) | |
# In addition to the [CLS] tokens from the `n` last blocks, we also return | |
# the patch tokens from the last block. This is useful for linear eval. | |
output.append(torch.mean(x[:, 1:], dim=1)) | |
return torch.cat(output, dim=-1) | |
def return_patch_emb_from_n_last_blocks(self, x, n=1, return_patch_avgpool=False): | |
"""Return intermediate patch embeddings, rather than CLS token, from the last n blocks.""" | |
B = x.shape[0] | |
x = self.patch_embed(x) | |
cls_tokens = self.cls_token.expand(B, -1, -1) | |
x = torch.cat((cls_tokens, x), dim=1) | |
pos_embed = self.interpolate_pos_encoding(x, self.pos_embed) | |
x = x + pos_embed | |
x = self.pos_drop(x) | |
# we will return the [CLS] tokens from the `n` last blocks | |
output = [] | |
for i, blk in enumerate(self.blocks): | |
x = blk(x) | |
if len(self.blocks) - i <= n: | |
output.append(self.norm(x)[:, 1:]) # get only CLS token (B x dim) | |
if return_patch_avgpool: | |
x = self.norm(x) | |
# In addition to the [CLS] tokens from the `n` last blocks, we also return | |
# the patch tokens from the last block. This is useful for linear eval. | |
output.append(torch.mean(x[:, 1:], dim=1)) | |
return torch.stack(output, dim=-1) # B x n_patches x dim x n | |
def deit_tiny(patch_size=16, **kwargs): | |
model = VisionTransformer( | |
patch_size=patch_size, | |
embed_dim=192, | |
depth=12, | |
num_heads=3, | |
mlp_ratio=4, | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
**kwargs) | |
return model | |
def deit_small(patch_size=16, **kwargs): | |
depth = kwargs.pop("depth") if "depth" in kwargs else 12 | |
model = VisionTransformer( | |
patch_size=patch_size, | |
embed_dim=384, | |
depth=depth, | |
num_heads=6, | |
mlp_ratio=4, | |
qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
**kwargs | |
) | |
return model | |
def vit_base(patch_size=16, **kwargs): | |
model = VisionTransformer( | |
patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, | |
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
return model | |
class DINOHead(nn.Module): | |
def __init__(self, in_dim, out_dim, use_bn=False, norm_last_layer=True, nlayers=3, hidden_dim=2048, bottleneck_dim=256): | |
super().__init__() | |
nlayers = max(nlayers, 1) | |
if nlayers == 1: | |
self.mlp = nn.Linear(in_dim, bottleneck_dim) | |
else: | |
layers = [nn.Linear(in_dim, hidden_dim)] | |
if use_bn: | |
layers.append(nn.BatchNorm1d(hidden_dim)) | |
layers.append(nn.GELU()) | |
for _ in range(nlayers - 2): | |
layers.append(nn.Linear(hidden_dim, hidden_dim)) | |
if use_bn: | |
layers.append(nn.BatchNorm1d(hidden_dim)) | |
layers.append(nn.GELU()) | |
layers.append(nn.Linear(hidden_dim, bottleneck_dim)) | |
self.mlp = nn.Sequential(*layers) | |
self.apply(self._init_weights) | |
self.last_layer = nn.utils.weight_norm(nn.Linear(bottleneck_dim, out_dim, bias=False)) | |
self.last_layer.weight_g.data.fill_(1) | |
if norm_last_layer: | |
self.last_layer.weight_g.requires_grad = False | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
def forward(self, x): | |
x = self.mlp(x) | |
x = nn.functional.normalize(x, dim=-1, p=2) | |
x = self.last_layer(x) | |
return x | |