# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ Mostly copy-paste from timm library. https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py """ from typing import Optional import math from functools import partial import torch import torch.nn as nn def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn( "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. The distribution of values may be incorrect.", stacklevel=2 ) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): # type: (Tensor, float, float, float, float) -> Tensor return _no_grad_trunc_normal_(tensor, mean, std, a, b) def drop_path(x, drop_prob: float = 0., training: bool = False): if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 # square root of dimension for normalisation self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape # B x (cls token + # patch tokens) x dim qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) # qkv: 3 x B x Nh x (cls token + # patch tokens) x (dim // Nh) q, k, v = qkv[0], qkv[1], qkv[2] # q, k, v: B x Nh x (cls token + # patch tokens) x (dim // Nh) # q: B x Nh x (cls token + # patch tokens) x (dim // Nh) # k.transpose(-2, -1) = B x Nh x (dim // Nh) x (cls token + # patch tokens) # attn: B x Nh x (cls token + # patch tokens) x (cls token + # patch tokens) attn = (q @ k.transpose(-2, -1)) * self.scale # @ operator is for matrix multiplication attn = attn.softmax(dim=-1) # B x Nh x (cls token + # patch tokens) x (cls token + # patch tokens) attn = self.attn_drop(attn) # attn = B x Nh x (cls token + # patch tokens) x (cls token + # patch tokens) # v = B x Nh x (cls token + # patch tokens) x (dim // Nh) # attn @ v = B x Nh x (cls token + # patch tokens) x (dim // Nh) # (attn @ v).transpose(1, 2) = B x (cls token + # patch tokens) x Nh x (dim // Nh) x = (attn @ v).transpose(1, 2).reshape(B, N, C) # B x (cls token + # patch tokens) x dim x = self.proj(x) # B x (cls token + # patch tokens) x dim x = self.proj_drop(x) return x, attn class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop ) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, return_attention=False): y, attn = self.attn(self.norm1(x)) if return_attention: return attn x = x + self.drop_path(y) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding""" def __init__(self, img_size=(224, 224), patch_size=16, in_chans=3, embed_dim=768): super().__init__() num_patches = (img_size[0] // patch_size) * (img_size[1] // patch_size) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): B, C, H, W = x.shape x = self.proj(x) x = x.flatten(2).transpose(1, 2) # B x (P_H * P_W) x C return x class VisionTransformer(nn.Module): """ Vision Transformer """ def __init__(self, img_size=(224, 224), patch_size=16, in_chans=3, num_classes=0, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm): super().__init__() self.num_features = self.embed_dim = embed_dim self.patch_embed = PatchEmbed( img_size=(224, 224), # noel: this is to load pretrained model. patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim ) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer ) for i in range(depth)]) self.norm = norm_layer(embed_dim) # Classifier head self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) self.depth = depth self.embed_dim = self.n_embs = embed_dim self.mlp_ratio = mlp_ratio self.n_heads = num_heads self.patch_size = patch_size def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def make_input_divisible(self, x: torch.Tensor) -> torch.Tensor: """Pad some pixels to make the input size divisible by the patch size.""" B, _, H_0, W_0 = x.shape pad_w = (self.patch_size - W_0 % self.patch_size) % self.patch_size pad_h = (self.patch_size - H_0 % self.patch_size) % self.patch_size x = nn.functional.pad(x, (0, pad_w, 0, pad_h), value=0) return x def prepare_tokens(self, x): B, nc, h, w = x.shape x: torch.Tensor = self.make_input_divisible(x) patch_embed_h, patch_embed_w = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size x = self.patch_embed(x) # patch linear embedding # add positional encoding to each token # add the [CLS] token to the embed patch tokens cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) x = x + self.interpolate_pos_encoding(x, self.pos_embed, size=(patch_embed_h, patch_embed_w)) return self.pos_drop(x) @staticmethod def split_token(x, token_type: str): if token_type == "cls": return x[:, 0, :] elif token_type == "patch": return x[:, 1:, :] else: return x # noel def forward(self, x, layer: Optional[str] = None): x: torch.Tensor = self.prepare_tokens(x) features: dict = {} for i, blk in enumerate(self.blocks): x = blk(x) features[f"layer{i + 1}"] = self.norm(x) if layer is not None: return features[layer] else: return features # noel - for DINO's visual def get_last_selfattention(self, x): x = self.prepare_tokens(x) for i, blk in enumerate(self.blocks): if i < len(self.blocks) - 1: x = blk(x) else: # return attention of the last block return blk(x, return_attention=True) def get_tokens( self, x, layers: list, patch_tokens: bool = False, norm: bool = True, input_tokens: bool = False, post_pe: bool = False ): """Return intermediate tokens.""" list_tokens: list = [] B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) if input_tokens: list_tokens.append(x) pos_embed = self.interpolate_pos_encoding(x, self.pos_embed) x = x + pos_embed if post_pe: list_tokens.append(x) x = self.pos_drop(x) for i, blk in enumerate(self.blocks): x = blk(x) # B x # patches x dim if layers is None or i in layers: list_tokens.append(self.norm(x) if norm else x) tokens = torch.stack(list_tokens, dim=1) # B x n_layers x (1 + # patches) x dim if not patch_tokens: return tokens[:, :, 0, :] # index [CLS] tokens only, B x n_layers x dim else: return tokens def forward_features(self, x): B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) pos_embed = self.interpolate_pos_encoding(x, self.pos_embed) x = x + pos_embed x = self.pos_drop(x) for blk in self.blocks: x = blk(x) if self.norm is not None: x = self.norm(x) return x[:, 0] def interpolate_pos_encoding(self, x, pos_embed, size): """Interpolate the learnable positional encoding to match the number of patches. x: B x (1 + N patches) x dim_embedding pos_embed: B x (1 + N patches) x dim_embedding return interpolated positional embedding """ npatch = x.shape[1] - 1 # (H // patch_size * W // patch_size) N = pos_embed.shape[1] - 1 # 784 (= 28 x 28) if npatch == N: return pos_embed class_emb, pos_embed = pos_embed[:, 0], pos_embed[:, 1:] # a learnable CLS token, learnable position embeddings dim = x.shape[-1] # dimension of embeddings pos_embed = nn.functional.interpolate( pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), # B x dim x 28 x 28 size=size, mode='bicubic', align_corners=False ) pos_embed = pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) pos_embed = torch.cat((class_emb.unsqueeze(0), pos_embed), dim=1) return pos_embed def forward_selfattention(self, x, return_interm_attn=False): B, nc, w, h = x.shape N = self.pos_embed.shape[1] - 1 x = self.patch_embed(x) # interpolate patch embeddings dim = x.shape[-1] w0 = w // self.patch_embed.patch_size h0 = h // self.patch_embed.patch_size class_pos_embed = self.pos_embed[:, 0] patch_pos_embed = self.pos_embed[:, 1:] patch_pos_embed = nn.functional.interpolate( patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)), mode='bicubic' ) if w0 != patch_pos_embed.shape[-2]: helper = torch.zeros(h0)[None, None, None, :].repeat(1, dim, w0 - patch_pos_embed.shape[-2], 1).to(x.device) patch_pos_embed = torch.cat((patch_pos_embed, helper), dim=-2) if h0 != patch_pos_embed.shape[-1]: helper = torch.zeros(w0)[None, None, :, None].repeat(1, dim, 1, h0 - patch_pos_embed.shape[-1]).to(x.device) pos_embed = torch.cat((patch_pos_embed, helper), dim=-1) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) pos_embed = torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) cls_tokens = self.cls_token.expand(B, -1, -1) # self.cls_token: 1 x 1 x emb_dim -> ? x = torch.cat((cls_tokens, x), dim=1) x = x + pos_embed x = self.pos_drop(x) if return_interm_attn: list_attn = [] for i, blk in enumerate(self.blocks): attn = blk(x, return_attention=True) x = blk(x) list_attn.append(attn) return torch.cat(list_attn, dim=0) else: for i, blk in enumerate(self.blocks): if i < len(self.blocks) - 1: x = blk(x) else: return blk(x, return_attention=True) def forward_return_n_last_blocks(self, x, n=1, return_patch_avgpool=False): B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) pos_embed = self.interpolate_pos_encoding(x, self.pos_embed) x = x + pos_embed x = self.pos_drop(x) # we will return the [CLS] tokens from the `n` last blocks output = [] for i, blk in enumerate(self.blocks): x = blk(x) if len(self.blocks) - i <= n: # get only CLS token (B x dim) output.append(self.norm(x)[:, 0]) if return_patch_avgpool: x = self.norm(x) # In addition to the [CLS] tokens from the `n` last blocks, we also return # the patch tokens from the last block. This is useful for linear eval. output.append(torch.mean(x[:, 1:], dim=1)) return torch.cat(output, dim=-1) def return_patch_emb_from_n_last_blocks(self, x, n=1, return_patch_avgpool=False): """Return intermediate patch embeddings, rather than CLS token, from the last n blocks.""" B = x.shape[0] x = self.patch_embed(x) cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) pos_embed = self.interpolate_pos_encoding(x, self.pos_embed) x = x + pos_embed x = self.pos_drop(x) # we will return the [CLS] tokens from the `n` last blocks output = [] for i, blk in enumerate(self.blocks): x = blk(x) if len(self.blocks) - i <= n: output.append(self.norm(x)[:, 1:]) # get only CLS token (B x dim) if return_patch_avgpool: x = self.norm(x) # In addition to the [CLS] tokens from the `n` last blocks, we also return # the patch tokens from the last block. This is useful for linear eval. output.append(torch.mean(x[:, 1:], dim=1)) return torch.stack(output, dim=-1) # B x n_patches x dim x n def deit_tiny(patch_size=16, **kwargs): model = VisionTransformer( patch_size=patch_size, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) return model def deit_small(patch_size=16, **kwargs): depth = kwargs.pop("depth") if "depth" in kwargs else 12 model = VisionTransformer( patch_size=patch_size, embed_dim=384, depth=depth, num_heads=6, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs ) return model def vit_base(patch_size=16, **kwargs): model = VisionTransformer( patch_size=patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) return model class DINOHead(nn.Module): def __init__(self, in_dim, out_dim, use_bn=False, norm_last_layer=True, nlayers=3, hidden_dim=2048, bottleneck_dim=256): super().__init__() nlayers = max(nlayers, 1) if nlayers == 1: self.mlp = nn.Linear(in_dim, bottleneck_dim) else: layers = [nn.Linear(in_dim, hidden_dim)] if use_bn: layers.append(nn.BatchNorm1d(hidden_dim)) layers.append(nn.GELU()) for _ in range(nlayers - 2): layers.append(nn.Linear(hidden_dim, hidden_dim)) if use_bn: layers.append(nn.BatchNorm1d(hidden_dim)) layers.append(nn.GELU()) layers.append(nn.Linear(hidden_dim, bottleneck_dim)) self.mlp = nn.Sequential(*layers) self.apply(self._init_weights) self.last_layer = nn.utils.weight_norm(nn.Linear(bottleneck_dim, out_dim, bias=False)) self.last_layer.weight_g.data.fill_(1) if norm_last_layer: self.last_layer.weight_g.requires_grad = False def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): x = self.mlp(x) x = nn.functional.normalize(x, dim=-1, p=2) x = self.last_layer(x) return x