Spaces:
Running
Running
import gradio as gr | |
from transformers import ViltProcessor, ViltForQuestionAnswering | |
import torch | |
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg') | |
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa") | |
model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa") | |
def answer_question(image, text): | |
encoding = processor(image, text, return_tensors="pt") | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(**encoding) | |
logits = outputs.logits | |
idx = logits.argmax(-1).item() | |
predicted_answer = model.config.id2label[idx] | |
return predicted_answer | |
image = gr.inputs.Image(type="pil") | |
question = gr.inputs.Textbox(label="Question") | |
answer = gr.outputs.Textbox(label="Predicted answer") | |
examples = [["cats.jpg", "How many cats are there?"]] | |
title = "Interactive demo: ViLT" | |
description = "Gradio Demo for ViLT (Vision and Language Transformer), fine-tuned on VQAv2, a model that can answer questions from images. To use it, simply upload your image and type a question and click 'submit', or click one of the examples to load them. Read more at the links below." | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2102.03334' target='_blank'>ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision</a> | <a href='https://github.com/dandelin/ViLT' target='_blank'>Github Repo</a></p>" | |
interface = gr.Interface(fn=answer_question, | |
inputs=[image, question], | |
outputs=answer, | |
examples=examples, | |
title=title, | |
description=description, | |
article=article, | |
enable_queue=True) | |
interface.launch(debug=True) |