import gradio as gr from transformers import ViltProcessor, ViltForQuestionAnswering import torch torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg') processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa") model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa") def answer_question(image, text): encoding = processor(image, text, return_tensors="pt") # forward pass with torch.no_grad(): outputs = model(**encoding) logits = outputs.logits idx = logits.argmax(-1).item() predicted_answer = model.config.id2label[idx] return predicted_answer image = gr.inputs.Image(type="pil") question = gr.inputs.Textbox(label="Question") answer = gr.outputs.Textbox(label="Predicted answer") examples = [["cats.jpg", "How many cats are there?"]] title = "Interactive demo: ViLT" description = "Gradio Demo for ViLT (Vision and Language Transformer), fine-tuned on VQAv2, a model that can answer questions from images. To use it, simply upload your image and type a question and click 'submit', or click one of the examples to load them. Read more at the links below." article = "
ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision | Github Repo
" interface = gr.Interface(fn=answer_question, inputs=[image, question], outputs=answer, examples=examples, title=title, description=description, article=article, enable_queue=True) interface.launch(debug=True)