vilt-nlvr / app.py
nielsr's picture
nielsr HF staff
Create app.py
e67d9c6
raw
history blame
2.39 kB
import gradio as gr
from transformers import ViltProcessor, ViltForNaturalLanguageVisualReasoning
import torch
torch.hub.download_url_to_file('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg', 'image1.jpg')
torch.hub.download_url_to_file('https://lil.nlp.cornell.edu/nlvr/exs/ex0_1.jpg', 'image2.jpg')
processor = ViltProcessor.from_pretrained("nielsr/vilt-b32-finetuned-nlvr2")
model = ViltForNaturalLanguageVisualReasoning.from_pretrained("nielsr/vilt-b32-finetuned-nlvr2")
def predict(image1, image2, text):
encoding_1 = processor(image1, text, return_tensors="pt")
encoding_2 = processor(image2, text, return_tensors="pt")
# forward pass
with torch.no_grad():
outputs = model(input_ids=encoding_1.input_ids, pixel_values=encoding_1.pixel_values, pixel_values_2=encoding_2.pixel_values)
logits = outputs.logits
idx = logits.argmax(-1).item()
predicted_answer = model.config.id2label[idx]
return predicted_answer
images = [gr.inputs.Image(type="pil"), gr.inputs.Image(type="pil")]
text = gr.inputs.Textbox(lines=2, label="Sentence")
answer = gr.outputs.Textbox(label="Predicted answer")
example_sentence = "The left image contains twice the number of dogs as the right image, and at least two dogs in total are standing."
examples = [["image1.jpg", "image2.jpg", example_sentence]]
title = "Interactive demo: natural language visual reasoning with ViLT"
description = "Gradio Demo for ViLT (Vision and Language Transformer), fine-tuned on NLVR2. To use it, simply upload a pair of images and type a sentence and click 'submit', or click one of the examples to load them. The model will predict whether the sentence is true or false, based on the 2 images. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2102.03334' target='_blank'>ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision</a> | <a href='https://github.com/dandelin/ViLT' target='_blank'>Github Repo</a></p>"
interface = gr.Interface(fn=predict,
inputs=images + [text],
outputs=answer,
examples=examples,
title=title,
description=description,
article=article,
enable_queue=True)
interface.launch(debug=True)