nielsr HF staff commited on
Commit
e67d9c6
·
1 Parent(s): 3bf522e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -0
app.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import ViltProcessor, ViltForNaturalLanguageVisualReasoning
3
+ import torch
4
+
5
+ torch.hub.download_url_to_file('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg', 'image1.jpg')
6
+ torch.hub.download_url_to_file('https://lil.nlp.cornell.edu/nlvr/exs/ex0_1.jpg', 'image2.jpg')
7
+
8
+ processor = ViltProcessor.from_pretrained("nielsr/vilt-b32-finetuned-nlvr2")
9
+ model = ViltForNaturalLanguageVisualReasoning.from_pretrained("nielsr/vilt-b32-finetuned-nlvr2")
10
+
11
+ def predict(image1, image2, text):
12
+ encoding_1 = processor(image1, text, return_tensors="pt")
13
+ encoding_2 = processor(image2, text, return_tensors="pt")
14
+
15
+ # forward pass
16
+ with torch.no_grad():
17
+ outputs = model(input_ids=encoding_1.input_ids, pixel_values=encoding_1.pixel_values, pixel_values_2=encoding_2.pixel_values)
18
+
19
+ logits = outputs.logits
20
+ idx = logits.argmax(-1).item()
21
+ predicted_answer = model.config.id2label[idx]
22
+
23
+ return predicted_answer
24
+
25
+ images = [gr.inputs.Image(type="pil"), gr.inputs.Image(type="pil")]
26
+ text = gr.inputs.Textbox(lines=2, label="Sentence")
27
+ answer = gr.outputs.Textbox(label="Predicted answer")
28
+
29
+ example_sentence = "The left image contains twice the number of dogs as the right image, and at least two dogs in total are standing."
30
+ examples = [["image1.jpg", "image2.jpg", example_sentence]]
31
+
32
+ title = "Interactive demo: natural language visual reasoning with ViLT"
33
+ description = "Gradio Demo for ViLT (Vision and Language Transformer), fine-tuned on NLVR2. To use it, simply upload a pair of images and type a sentence and click 'submit', or click one of the examples to load them. The model will predict whether the sentence is true or false, based on the 2 images. Read more at the links below."
34
+ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2102.03334' target='_blank'>ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision</a> | <a href='https://github.com/dandelin/ViLT' target='_blank'>Github Repo</a></p>"
35
+
36
+ interface = gr.Interface(fn=predict,
37
+ inputs=images + [text],
38
+ outputs=answer,
39
+ examples=examples,
40
+ title=title,
41
+ description=description,
42
+ article=article,
43
+ enable_queue=True)
44
+ interface.launch(debug=True)