Spaces:
Build error
Build error
Based on https://github.com/tloen/alpaca-lora | |
## Instructions | |
1. Download a LoRA, for instance: | |
``` | |
python download-model.py tloen/alpaca-lora-7b | |
``` | |
2. Load the LoRA. 16-bit, 8-bit, and CPU modes work: | |
``` | |
python server.py --model llama-7b-hf --lora tloen_alpaca-lora-7b | |
python server.py --model llama-7b-hf --lora tloen_alpaca-lora-7b --load-in-8bit | |
python server.py --model llama-7b-hf --lora tloen_alpaca-lora-7b --cpu | |
``` | |
* For using LoRAs in 4-bit mode, follow [these special instructions](GPTQ-models-(4-bit-mode).md#using-loras-in-4-bit-mode). | |
* Instead of using the `--lora` command-line flag, you can also select the LoRA in the "Parameters" tab of the interface. | |
## Prompt | |
For the Alpaca LoRA in particular, the prompt must be formatted like this: | |
``` | |
Below is an instruction that describes a task. Write a response that appropriately completes the request. | |
### Instruction: | |
Write a Python script that generates text using the transformers library. | |
### Response: | |
``` | |
Sample output: | |
``` | |
Below is an instruction that describes a task. Write a response that appropriately completes the request. | |
### Instruction: | |
Write a Python script that generates text using the transformers library. | |
### Response: | |
import transformers | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
model = AutoModelForCausalLM.from_pretrained("bert-base-uncased") | |
texts = ["Hello world", "How are you"] | |
for sentence in texts: | |
sentence = tokenizer(sentence) | |
print(f"Generated {len(sentence)} tokens from '{sentence}'") | |
output = model(sentences=sentence).predict() | |
print(f"Predicted {len(output)} tokens for '{sentence}':\n{output}") | |
``` | |
## Training a LoRA | |
You can train your own LoRAs from the `Training` tab. See [Training LoRAs](Training-LoRAs.md) for details. | |