Spaces:
Sleeping
Sleeping
import glob | |
import pickle | |
import numpy as np | |
import jax | |
import jax.numpy as jnp | |
import torch | |
from torch_geometric.nn import knn | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
import open3d as o3d | |
import trimesh | |
def createPlane(normal, point_on_plane): | |
normal = normal / np.linalg.norm(normal) | |
# Find a vector in the plane | |
if np.allclose(normal, [1, 0, 0]): | |
v1 = np.cross(normal, [0, 1, 0]) | |
else: | |
v1 = np.cross(normal, [1, 0, 0]) | |
v1 = v1 / np.linalg.norm(v1) | |
v2 = np.cross(normal, v1) | |
v2 = v2 / np.linalg.norm(v2) | |
half_width = 1 | |
half_height = 1 | |
# Calculate the corners | |
corner1 = point_on_plane + half_width * v1 + half_height * v2 | |
corner2 = point_on_plane - half_width * v1 + half_height * v2 | |
corner3 = point_on_plane - half_width * v1 - half_height * v2 | |
corner4 = point_on_plane + half_width * v1 - half_height * v2 | |
vertices = np.array([corner1, corner2, corner3, corner4]) | |
faces = np.array([ | |
[0, 1, 2], | |
[0, 2, 3], | |
[2, 1, 0], | |
[3, 2, 0] | |
]) | |
# Define the color (sky blue) with opacity (alpha) | |
# Define the color (sky blue) with transparency | |
sky_blue_with_alpha = [255, 255, 255, 128] # RGBA format, with 128 alpha for half opacity | |
# Set the vertex colors with transparency | |
vertex_colors = np.tile(sky_blue_with_alpha, (vertices.shape[0], 1)) | |
# Create a mesh for the rectangle | |
plane_mesh = trimesh.Trimesh(vertices=vertices, faces=faces, vertex_colors=vertex_colors) | |
return plane_mesh | |
def reflect_points_multiple_3d(d, n, p): | |
points_expanded = p.unsqueeze(0).expand(n.size(0), -1, -1) | |
normals_expanded = n.unsqueeze(1).expand(-1, p.size(0), -1) | |
distances_expanded = d.unsqueeze(1).expand(-1, p.size(0)) | |
dot_products = torch.sum(points_expanded * normals_expanded, dim=2) | |
# reflections: (m, n, 3) | |
reflections = points_expanded - 2 * (dot_products - distances_expanded).unsqueeze(2) * normals_expanded | |
return reflections | |
def reflection_point_association_3d(d, n, q, threshold): | |
# d in shape (m, ), n in shape (m, 3), q in shape (n, 3) | |
reflections = reflect_points_multiple_3d(d, n, q) # shape: (m, n, 3) | |
reflections = reflections.view(-1, 3) # Flatten to (m*n, 3) | |
# Using knn to find the closest points in q for each point in reflections | |
# knn finds indices of the nearest neighbors | |
_, indices = knn(q, reflections, k=1, batch_x=None, batch_y=None) # indices shape: (m*n, 1) | |
# Gather nearest points based on indices from q | |
nearest_points = q[indices.squeeze()] # shape: (m*n, 3) | |
# Calculate distances for the nearest neighbors | |
distances = (nearest_points - reflections).norm(dim=1) # shape: (m*n,) | |
# Reshape distances back to (m, n) and check threshold | |
distances = distances.view(d.size(0), -1) # shape: (m, n) | |
within_threshold = distances <= threshold # shape: (m, n), sum this along axis 1 to get the number of associated points | |
return within_threshold | |
def get_patches(points, centroids): | |
norm = np.linalg.norm(centroids, axis=1) | |
n = centroids / norm[:, None] | |
d = norm - 1 | |
association = reflection_point_association_3d(torch.tensor(np.array(d)), torch.tensor(np.array(n)), | |
torch.tensor(np.array(points)), 0.03) | |
return np.array(association) | |
def left_right(allpoints, patchbool, planepoints): | |
""" | |
inputs: patchpoints: (n,3) | |
planepoints: (4,3) | |
outputs: leftpoints, rightpoints: (k,3), (k',3) | |
""" | |
def signed_distance(point, plane_point, normal): | |
return np.dot(normal, point - plane_point) / (np.linalg.norm(normal)+1e-6) | |
patchpoints = allpoints[patchbool] | |
p1 = planepoints[0] | |
p2 = planepoints[1] | |
p3 = planepoints[2] | |
v1 = p2 - p1 | |
v2 = p3 - p1 | |
normal = np.cross(v1, v2) | |
distances = np.array([signed_distance(point, p1, normal) for point in patchpoints]) | |
contains_nan = np.isnan(distances).any() | |
l_idx = distances<0 | |
allidcs = np.arange(len(allpoints))[patchbool] | |
left_idx = allidcs[l_idx] | |
right_idx = allidcs[~l_idx] | |
#left_points = patchpoints[l_idx] | |
#right_points = patchpoints[~l_idx] | |
return left_idx, right_idx#left_points, right_points | |
def dbscan(D, eps, MinPts): | |
labels = [0]*len(D) | |
C = 0 | |
for P in range(0, len(D)): | |
if not (labels[P] == 0): | |
continue | |
NeighborPts = region_query(D, P, eps) | |
if len(NeighborPts) < MinPts: | |
labels[P] = -1 | |
else: | |
C += 1 | |
grow_cluster(D, labels, P, NeighborPts, C, eps, MinPts) | |
return labels | |
def grow_cluster(D, labels, P, NeighborPts, C, eps, MinPts): | |
labels[P] = C | |
i = 0 | |
while i < len(NeighborPts): | |
Pn = NeighborPts[i] | |
if labels[Pn] == -1: | |
labels[Pn] = C | |
elif labels[Pn] == 0: | |
labels[Pn] = C | |
PnNeighborPts = region_query(D, Pn, eps) | |
if len(PnNeighborPts) >= MinPts: | |
NeighborPts = NeighborPts + PnNeighborPts | |
i += 1 | |
def region_query(D, P, eps): | |
neighbors = [] | |
for Pn in range(0, len(D)): | |
#if geodesic_dist(D[P], D[Pn])<eps: | |
if np.linalg.norm(D[P] - D[Pn]) < eps: | |
neighbors.append(Pn) | |
return neighbors | |
def compute_centroids(data, labels): | |
unique = np.unique(labels) | |
unique_labels = unique[unique!=-1] | |
centroids = [] | |
for label in unique_labels: | |
mask = labels == label | |
points = data[mask] | |
centroid = jnp.mean(points, axis=0) | |
centroids.append(centroid) | |
return np.stack(centroids) | |
def proc_all(mesh_path, mode_path): | |
with open(mode_path, 'rb') as f: | |
fin = pickle.load(f) | |
name = mesh_path.split('/')[-1].split('.')[0] | |
mesh = trimesh.load(mesh_path) | |
verts = np.array(mesh.vertices) | |
my_labels = dbscan(fin, eps=0.1, MinPts=1) | |
centroid = np.array(compute_centroids(fin, my_labels)) | |
norm = torch.norm(torch.tensor(np.array(centroid)), dim=-1) | |
n = centroid / norm[:,None] | |
d = norm - 1 | |
point = n * d[...,None] | |
#pts = create_points_3d(fin, alpha = 1, markersize = 4, label = 'final timestep') | |
#pts2 = create_points_3d(centroid, alpha = 1, markersize = 10, label = 'final timestep') | |
#plot_all_3d([pts, pts2]) | |
pats = get_patches(torch.tensor(np.array(verts)), torch.tensor(centroid)) | |
alldicts = [] | |
for i in range(len(n)): | |
plane = createPlane(n[i], point[i]) | |
l,r = left_right(verts, pats[i], plane.vertices) | |
single = {'plane': plane, 'left': l, 'right': r} | |
alldicts.append(single) | |
return alldicts | |
def create_scene(allscenes, plane_idx): | |
scene = allscenes[plane_idx] | |
temp_file = f"/tmp/scene_{plane_idx}.obj" | |
scene.export(temp_file) | |
return temp_file | |
def load_mesh_max(scene_path): | |
dict_path = scene_path.split('/')[-1].split('.')[0][:-7] + "_dicts.pickle" | |
with open(dict_path, 'rb') as f: | |
dicts = pickle.load(f) | |
with open(scene_path, 'rb') as f: | |
scenes = pickle.load(f) | |
alllengths = [dic['len'] for dic in dicts] | |
sort_idcs = np.argsort(alllengths) | |
sorted_planes = np.array(scenes)[sort_idcs] | |
allmesh = [] | |
for i in range(min(5, len(dicts))): # Limiting to maximum 5 outputs | |
temp_file = create_scene(sorted_planes, -(i+1)) | |
allmesh.append(temp_file) | |
return allmesh + [None] * (5 - len(allmesh)) # Fill the rest with None if less than 5 | |
def load_mesh_min(scene_path): | |
dict_path = scene_path.split('/')[-1].split('.')[0][:-7] + "_dicts.pickle" | |
with open(dict_path, 'rb') as f: | |
dicts = pickle.load(f) | |
with open(scene_path, 'rb') as f: | |
scenes = pickle.load(f) | |
alllengths = [dic['len'] for dic in dicts] | |
sort_idcs = np.argsort(alllengths) | |
sorted_planes = np.array(scenes)[sort_idcs] | |
allmesh = [] | |
for i in range(min(5, len(dicts))): # Limiting to maximum 5 outputs | |
temp_file = create_scene(sorted_planes, i) | |
allmesh.append(temp_file) | |
return allmesh + [None] * (5 - len(allmesh)) # Fill the rest with None if less than 5 | |
def reset_outputs(): | |
# Returns a list of None, one for each 3D model output to reset them | |
return [None] * 10 # Adjust to the total number of Model3D components you have | |
examples = glob.glob("*_planes.pickle") | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
file_input = gr.File(label="Upload processed planes here") | |
examples_component = gr.Examples(examples=examples, inputs=file_input, outputs=None, examples_per_page=25) | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=600): | |
gr.Markdown("Top 5 largest") | |
model1 = gr.Model3D(label="3D Model 1", height=500) | |
model2 = gr.Model3D(label="3D Model 2", height=500) | |
model3 = gr.Model3D(label="3D Model 3", height=500) | |
model4 = gr.Model3D(label="3D Model 4", height=500) | |
model5 = gr.Model3D(label="3D Model 5", height=500) | |
with gr.Column(scale=1, min_width=600): | |
gr.Markdown("Top 5 smallest") | |
model6 = gr.Model3D(label="3D Model 6", height=500) | |
model7 = gr.Model3D(label="3D Model 7", height=500) | |
model8 = gr.Model3D(label="3D Model 8", height=500) | |
model9 = gr.Model3D(label="3D Model 9", height=500) | |
model10 = gr.Model3D(label="3D Model 10", height=500) | |
# Setup the function to be called when files are uploaded or an example is chosen | |
# Reset the outputs whenever a new file is uploaded | |
file_input.change(fn=reset_outputs, inputs=[], outputs=[model1, model2, model3, model4, model5, model6, model7, model8, model9, model10]) | |
file_input.change(fn=load_mesh_max, inputs=file_input, outputs=[model1, model2, model3, model4, model5]) | |
file_input.change(fn=load_mesh_min, inputs=file_input, outputs=[model6, model7, model8, model9, model10]) | |
if __name__ == "__main__": | |
demo.launch(debug=True) | |