symmetry_vis / app.py
jihyeonj's picture
updated path
5c05b49 verified
import glob
import pickle
import numpy as np
import jax
import jax.numpy as jnp
import torch
from torch_geometric.nn import knn
import gradio as gr
import matplotlib.pyplot as plt
import open3d as o3d
import trimesh
def createPlane(normal, point_on_plane):
normal = normal / np.linalg.norm(normal)
# Find a vector in the plane
if np.allclose(normal, [1, 0, 0]):
v1 = np.cross(normal, [0, 1, 0])
else:
v1 = np.cross(normal, [1, 0, 0])
v1 = v1 / np.linalg.norm(v1)
v2 = np.cross(normal, v1)
v2 = v2 / np.linalg.norm(v2)
half_width = 1
half_height = 1
# Calculate the corners
corner1 = point_on_plane + half_width * v1 + half_height * v2
corner2 = point_on_plane - half_width * v1 + half_height * v2
corner3 = point_on_plane - half_width * v1 - half_height * v2
corner4 = point_on_plane + half_width * v1 - half_height * v2
vertices = np.array([corner1, corner2, corner3, corner4])
faces = np.array([
[0, 1, 2],
[0, 2, 3],
[2, 1, 0],
[3, 2, 0]
])
# Define the color (sky blue) with opacity (alpha)
# Define the color (sky blue) with transparency
sky_blue_with_alpha = [255, 255, 255, 128] # RGBA format, with 128 alpha for half opacity
# Set the vertex colors with transparency
vertex_colors = np.tile(sky_blue_with_alpha, (vertices.shape[0], 1))
# Create a mesh for the rectangle
plane_mesh = trimesh.Trimesh(vertices=vertices, faces=faces, vertex_colors=vertex_colors)
return plane_mesh
def reflect_points_multiple_3d(d, n, p):
points_expanded = p.unsqueeze(0).expand(n.size(0), -1, -1)
normals_expanded = n.unsqueeze(1).expand(-1, p.size(0), -1)
distances_expanded = d.unsqueeze(1).expand(-1, p.size(0))
dot_products = torch.sum(points_expanded * normals_expanded, dim=2)
# reflections: (m, n, 3)
reflections = points_expanded - 2 * (dot_products - distances_expanded).unsqueeze(2) * normals_expanded
return reflections
def reflection_point_association_3d(d, n, q, threshold):
# d in shape (m, ), n in shape (m, 3), q in shape (n, 3)
reflections = reflect_points_multiple_3d(d, n, q) # shape: (m, n, 3)
reflections = reflections.view(-1, 3) # Flatten to (m*n, 3)
# Using knn to find the closest points in q for each point in reflections
# knn finds indices of the nearest neighbors
_, indices = knn(q, reflections, k=1, batch_x=None, batch_y=None) # indices shape: (m*n, 1)
# Gather nearest points based on indices from q
nearest_points = q[indices.squeeze()] # shape: (m*n, 3)
# Calculate distances for the nearest neighbors
distances = (nearest_points - reflections).norm(dim=1) # shape: (m*n,)
# Reshape distances back to (m, n) and check threshold
distances = distances.view(d.size(0), -1) # shape: (m, n)
within_threshold = distances <= threshold # shape: (m, n), sum this along axis 1 to get the number of associated points
return within_threshold
def get_patches(points, centroids):
norm = np.linalg.norm(centroids, axis=1)
n = centroids / norm[:, None]
d = norm - 1
association = reflection_point_association_3d(torch.tensor(np.array(d)), torch.tensor(np.array(n)),
torch.tensor(np.array(points)), 0.03)
return np.array(association)
def left_right(allpoints, patchbool, planepoints):
"""
inputs: patchpoints: (n,3)
planepoints: (4,3)
outputs: leftpoints, rightpoints: (k,3), (k',3)
"""
def signed_distance(point, plane_point, normal):
return np.dot(normal, point - plane_point) / (np.linalg.norm(normal)+1e-6)
patchpoints = allpoints[patchbool]
p1 = planepoints[0]
p2 = planepoints[1]
p3 = planepoints[2]
v1 = p2 - p1
v2 = p3 - p1
normal = np.cross(v1, v2)
distances = np.array([signed_distance(point, p1, normal) for point in patchpoints])
contains_nan = np.isnan(distances).any()
l_idx = distances<0
allidcs = np.arange(len(allpoints))[patchbool]
left_idx = allidcs[l_idx]
right_idx = allidcs[~l_idx]
#left_points = patchpoints[l_idx]
#right_points = patchpoints[~l_idx]
return left_idx, right_idx#left_points, right_points
def dbscan(D, eps, MinPts):
labels = [0]*len(D)
C = 0
for P in range(0, len(D)):
if not (labels[P] == 0):
continue
NeighborPts = region_query(D, P, eps)
if len(NeighborPts) < MinPts:
labels[P] = -1
else:
C += 1
grow_cluster(D, labels, P, NeighborPts, C, eps, MinPts)
return labels
def grow_cluster(D, labels, P, NeighborPts, C, eps, MinPts):
labels[P] = C
i = 0
while i < len(NeighborPts):
Pn = NeighborPts[i]
if labels[Pn] == -1:
labels[Pn] = C
elif labels[Pn] == 0:
labels[Pn] = C
PnNeighborPts = region_query(D, Pn, eps)
if len(PnNeighborPts) >= MinPts:
NeighborPts = NeighborPts + PnNeighborPts
i += 1
def region_query(D, P, eps):
neighbors = []
for Pn in range(0, len(D)):
#if geodesic_dist(D[P], D[Pn])<eps:
if np.linalg.norm(D[P] - D[Pn]) < eps:
neighbors.append(Pn)
return neighbors
def compute_centroids(data, labels):
unique = np.unique(labels)
unique_labels = unique[unique!=-1]
centroids = []
for label in unique_labels:
mask = labels == label
points = data[mask]
centroid = jnp.mean(points, axis=0)
centroids.append(centroid)
return np.stack(centroids)
def proc_all(mesh_path, mode_path):
with open(mode_path, 'rb') as f:
fin = pickle.load(f)
name = mesh_path.split('/')[-1].split('.')[0]
mesh = trimesh.load(mesh_path)
verts = np.array(mesh.vertices)
my_labels = dbscan(fin, eps=0.1, MinPts=1)
centroid = np.array(compute_centroids(fin, my_labels))
norm = torch.norm(torch.tensor(np.array(centroid)), dim=-1)
n = centroid / norm[:,None]
d = norm - 1
point = n * d[...,None]
#pts = create_points_3d(fin, alpha = 1, markersize = 4, label = 'final timestep')
#pts2 = create_points_3d(centroid, alpha = 1, markersize = 10, label = 'final timestep')
#plot_all_3d([pts, pts2])
pats = get_patches(torch.tensor(np.array(verts)), torch.tensor(centroid))
alldicts = []
for i in range(len(n)):
plane = createPlane(n[i], point[i])
l,r = left_right(verts, pats[i], plane.vertices)
single = {'plane': plane, 'left': l, 'right': r}
alldicts.append(single)
return alldicts
def create_scene(allscenes, plane_idx):
scene = allscenes[plane_idx]
temp_file = f"/tmp/scene_{plane_idx}.obj"
scene.export(temp_file)
return temp_file
def load_mesh_max(scene_path):
dict_path = scene_path.split('/')[-1].split('.')[0][:-7] + "_dicts.pickle"
with open(dict_path, 'rb') as f:
dicts = pickle.load(f)
with open(scene_path, 'rb') as f:
scenes = pickle.load(f)
alllengths = [dic['len'] for dic in dicts]
sort_idcs = np.argsort(alllengths)
sorted_planes = np.array(scenes)[sort_idcs]
allmesh = []
for i in range(min(5, len(dicts))): # Limiting to maximum 5 outputs
temp_file = create_scene(sorted_planes, -(i+1))
allmesh.append(temp_file)
return allmesh + [None] * (5 - len(allmesh)) # Fill the rest with None if less than 5
def load_mesh_min(scene_path):
dict_path = scene_path.split('/')[-1].split('.')[0][:-7] + "_dicts.pickle"
with open(dict_path, 'rb') as f:
dicts = pickle.load(f)
with open(scene_path, 'rb') as f:
scenes = pickle.load(f)
alllengths = [dic['len'] for dic in dicts]
sort_idcs = np.argsort(alllengths)
sorted_planes = np.array(scenes)[sort_idcs]
allmesh = []
for i in range(min(5, len(dicts))): # Limiting to maximum 5 outputs
temp_file = create_scene(sorted_planes, i)
allmesh.append(temp_file)
return allmesh + [None] * (5 - len(allmesh)) # Fill the rest with None if less than 5
def reset_outputs():
# Returns a list of None, one for each 3D model output to reset them
return [None] * 10 # Adjust to the total number of Model3D components you have
examples = glob.glob("*_planes.pickle")
with gr.Blocks() as demo:
with gr.Row():
file_input = gr.File(label="Upload processed planes here")
examples_component = gr.Examples(examples=examples, inputs=file_input, outputs=None, examples_per_page=25)
with gr.Row():
with gr.Column(scale=1, min_width=600):
gr.Markdown("Top 5 largest")
model1 = gr.Model3D(label="3D Model 1", height=500)
model2 = gr.Model3D(label="3D Model 2", height=500)
model3 = gr.Model3D(label="3D Model 3", height=500)
model4 = gr.Model3D(label="3D Model 4", height=500)
model5 = gr.Model3D(label="3D Model 5", height=500)
with gr.Column(scale=1, min_width=600):
gr.Markdown("Top 5 smallest")
model6 = gr.Model3D(label="3D Model 6", height=500)
model7 = gr.Model3D(label="3D Model 7", height=500)
model8 = gr.Model3D(label="3D Model 8", height=500)
model9 = gr.Model3D(label="3D Model 9", height=500)
model10 = gr.Model3D(label="3D Model 10", height=500)
# Setup the function to be called when files are uploaded or an example is chosen
# Reset the outputs whenever a new file is uploaded
file_input.change(fn=reset_outputs, inputs=[], outputs=[model1, model2, model3, model4, model5, model6, model7, model8, model9, model10])
file_input.change(fn=load_mesh_max, inputs=file_input, outputs=[model1, model2, model3, model4, model5])
file_input.change(fn=load_mesh_min, inputs=file_input, outputs=[model6, model7, model8, model9, model10])
if __name__ == "__main__":
demo.launch(debug=True)