File size: 10,015 Bytes
be033f7
4bc989c
99ebece
2157b6f
1a49332
4bc989c
99ebece
 
4bc989c
99ebece
 
 
 
4bc989c
99ebece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a49332
99ebece
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196402c
 
0b7b3bd
99ebece
 
 
be033f7
5c05b49
be033f7
1a49332
be033f7
 
 
 
196402c
 
 
 
 
 
 
be033f7
 
5c05b49
be033f7
e64683b
be033f7
 
 
 
 
196402c
 
 
 
 
 
 
e64683b
 
 
 
 
196402c
5c05b49
99ebece
e64683b
 
 
2f52a9f
e64683b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99ebece
 
 
196402c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import glob
import pickle
import numpy as np
import jax
import jax.numpy as jnp

import torch
from torch_geometric.nn import knn

import gradio as gr
import matplotlib.pyplot as plt
import open3d as o3d
import trimesh


def createPlane(normal, point_on_plane):
    normal = normal / np.linalg.norm(normal)
    
    # Find a vector in the plane
    if np.allclose(normal, [1, 0, 0]):
        v1 = np.cross(normal, [0, 1, 0])
    else:
        v1 = np.cross(normal, [1, 0, 0])
    
    v1 = v1 / np.linalg.norm(v1)
    v2 = np.cross(normal, v1)
    v2 = v2 / np.linalg.norm(v2)
    
    half_width = 1
    half_height = 1
    
    # Calculate the corners
    corner1 = point_on_plane + half_width * v1 + half_height * v2
    corner2 = point_on_plane - half_width * v1 + half_height * v2
    corner3 = point_on_plane - half_width * v1 - half_height * v2
    corner4 = point_on_plane + half_width * v1 - half_height * v2

    vertices = np.array([corner1, corner2, corner3, corner4])

    faces = np.array([
        [0, 1, 2],
        [0, 2, 3],
        [2, 1, 0],
        [3, 2, 0]
    ])
    # Define the color (sky blue) with opacity (alpha)
    # Define the color (sky blue) with transparency
    sky_blue_with_alpha = [255, 255, 255, 128]  # RGBA format, with 128 alpha for half opacity

    # Set the vertex colors with transparency
    vertex_colors = np.tile(sky_blue_with_alpha, (vertices.shape[0], 1))

    # Create a mesh for the rectangle
    plane_mesh = trimesh.Trimesh(vertices=vertices, faces=faces, vertex_colors=vertex_colors)
    return plane_mesh

def reflect_points_multiple_3d(d, n, p):
    points_expanded = p.unsqueeze(0).expand(n.size(0), -1, -1)
    normals_expanded = n.unsqueeze(1).expand(-1, p.size(0), -1)
    distances_expanded = d.unsqueeze(1).expand(-1, p.size(0))
    dot_products = torch.sum(points_expanded * normals_expanded, dim=2)
    # reflections: (m, n, 3)
    reflections = points_expanded - 2 * (dot_products - distances_expanded).unsqueeze(2) * normals_expanded

    return reflections

def reflection_point_association_3d(d, n, q, threshold):
    # d in shape (m, ), n in shape (m, 3), q in shape (n, 3)
    reflections = reflect_points_multiple_3d(d, n, q)  # shape: (m, n, 3)
    reflections = reflections.view(-1, 3)  # Flatten to (m*n, 3)

    # Using knn to find the closest points in q for each point in reflections
    # knn finds indices of the nearest neighbors
    _, indices = knn(q, reflections, k=1, batch_x=None, batch_y=None) # indices shape: (m*n, 1)

    # Gather nearest points based on indices from q
    nearest_points = q[indices.squeeze()] # shape: (m*n, 3)

    # Calculate distances for the nearest neighbors
    distances = (nearest_points - reflections).norm(dim=1) # shape: (m*n,)

    # Reshape distances back to (m, n) and check threshold
    distances = distances.view(d.size(0), -1) # shape: (m, n)
    within_threshold = distances <= threshold # shape: (m, n), sum this along axis 1 to get the number of associated points
    return within_threshold

def get_patches(points, centroids):
    norm = np.linalg.norm(centroids, axis=1)
    n = centroids / norm[:, None]
    d = norm - 1

    association = reflection_point_association_3d(torch.tensor(np.array(d)), torch.tensor(np.array(n)),
                                                  torch.tensor(np.array(points)), 0.03)

    return np.array(association)

def left_right(allpoints, patchbool, planepoints):
    """
    inputs:     patchpoints:    (n,3) 
                planepoints:    (4,3) 
    outputs:    leftpoints, rightpoints: (k,3), (k',3)
    """
    def signed_distance(point, plane_point, normal):
        return np.dot(normal, point - plane_point) / (np.linalg.norm(normal)+1e-6)
    patchpoints = allpoints[patchbool]
    p1 = planepoints[0]
    p2 = planepoints[1]
    p3 = planepoints[2]
    v1 = p2 - p1
    v2 = p3 - p1
    normal = np.cross(v1, v2)

    distances = np.array([signed_distance(point, p1, normal) for point in patchpoints])
    contains_nan = np.isnan(distances).any()
    l_idx = distances<0
    allidcs = np.arange(len(allpoints))[patchbool]
    left_idx = allidcs[l_idx]
    right_idx = allidcs[~l_idx]
      
    #left_points = patchpoints[l_idx]
    #right_points = patchpoints[~l_idx]

    
    return left_idx, right_idx#left_points, right_points

def dbscan(D, eps, MinPts):
    labels = [0]*len(D)
    C = 0
    for P in range(0, len(D)):
        if not (labels[P] == 0):
           continue
        NeighborPts = region_query(D, P, eps)
        if len(NeighborPts) < MinPts:
            labels[P] = -1
        else: 
           C += 1
           grow_cluster(D, labels, P, NeighborPts, C, eps, MinPts)
    return labels

def grow_cluster(D, labels, P, NeighborPts, C, eps, MinPts):
    labels[P] = C
    i = 0
    while i < len(NeighborPts):    
        Pn = NeighborPts[i]
        if labels[Pn] == -1:
           labels[Pn] = C
        elif labels[Pn] == 0:
            labels[Pn] = C
            PnNeighborPts = region_query(D, Pn, eps)
            if len(PnNeighborPts) >= MinPts:
                NeighborPts = NeighborPts + PnNeighborPts

        i += 1        
    
def region_query(D, P, eps):
    neighbors = []
    for Pn in range(0, len(D)):
        #if geodesic_dist(D[P], D[Pn])<eps:
        if np.linalg.norm(D[P] - D[Pn]) < eps:
           neighbors.append(Pn)
            
    return neighbors

def compute_centroids(data, labels):
    unique = np.unique(labels)
    unique_labels = unique[unique!=-1]
    centroids = []
    for label in unique_labels:
        mask = labels == label
        points = data[mask]
        centroid = jnp.mean(points, axis=0)
        centroids.append(centroid)
    return np.stack(centroids)


def proc_all(mesh_path, mode_path):
  with open(mode_path, 'rb') as f:
    fin = pickle.load(f)
  name = mesh_path.split('/')[-1].split('.')[0]
  mesh = trimesh.load(mesh_path)
  verts = np.array(mesh.vertices)

  my_labels = dbscan(fin, eps=0.1, MinPts=1) 
  centroid = np.array(compute_centroids(fin, my_labels))

  norm = torch.norm(torch.tensor(np.array(centroid)), dim=-1)
  n = centroid / norm[:,None]
  d = norm - 1
  point = n * d[...,None]

  #pts = create_points_3d(fin, alpha = 1, markersize = 4, label = 'final timestep')
  #pts2 = create_points_3d(centroid, alpha = 1, markersize = 10, label = 'final timestep')
  #plot_all_3d([pts, pts2])

  pats = get_patches(torch.tensor(np.array(verts)), torch.tensor(centroid))
  alldicts = []
  for i in range(len(n)):
      plane = createPlane(n[i], point[i])
      l,r = left_right(verts, pats[i], plane.vertices)
      single = {'plane': plane, 'left': l, 'right': r}
      alldicts.append(single)
  return alldicts

def create_scene(allscenes, plane_idx):
    scene = allscenes[plane_idx] 
    temp_file = f"/tmp/scene_{plane_idx}.obj"
    scene.export(temp_file)
    return temp_file

def load_mesh_max(scene_path):
    dict_path = scene_path.split('/')[-1].split('.')[0][:-7] + "_dicts.pickle"
    with open(dict_path, 'rb') as f:
        dicts = pickle.load(f)
    with open(scene_path, 'rb') as f:
        scenes = pickle.load(f)
    alllengths = [dic['len'] for dic in dicts]
    sort_idcs = np.argsort(alllengths)
    sorted_planes = np.array(scenes)[sort_idcs]
    allmesh = []
    for i in range(min(5, len(dicts))):  # Limiting to maximum 5 outputs
        temp_file = create_scene(sorted_planes, -(i+1))
        allmesh.append(temp_file)
    return allmesh + [None] * (5 - len(allmesh))  # Fill the rest with None if less than 5


def load_mesh_min(scene_path):
    dict_path = scene_path.split('/')[-1].split('.')[0][:-7] + "_dicts.pickle"
    with open(dict_path, 'rb') as f:
        dicts = pickle.load(f)
    with open(scene_path, 'rb') as f:
        scenes = pickle.load(f)
    alllengths = [dic['len'] for dic in dicts]
    sort_idcs = np.argsort(alllengths)
    sorted_planes = np.array(scenes)[sort_idcs]
    allmesh = []
    for i in range(min(5, len(dicts))):  # Limiting to maximum 5 outputs
        temp_file = create_scene(sorted_planes, i)
        allmesh.append(temp_file)
    return allmesh + [None] * (5 - len(allmesh))  # Fill the rest with None if less than 5




def reset_outputs():
    # Returns a list of None, one for each 3D model output to reset them
    return [None] * 10  # Adjust to the total number of Model3D components you have
    
examples = glob.glob("*_planes.pickle")

with gr.Blocks() as demo:
    with gr.Row():
        file_input = gr.File(label="Upload processed planes here")
        examples_component = gr.Examples(examples=examples, inputs=file_input, outputs=None, examples_per_page=25)
    with gr.Row():
        with gr.Column(scale=1, min_width=600):
            gr.Markdown("Top 5 largest")
            model1 = gr.Model3D(label="3D Model 1", height=500)
            model2 = gr.Model3D(label="3D Model 2", height=500)
            model3 = gr.Model3D(label="3D Model 3", height=500)
            model4 = gr.Model3D(label="3D Model 4", height=500)
            model5 = gr.Model3D(label="3D Model 5", height=500)
        with gr.Column(scale=1, min_width=600):
            gr.Markdown("Top 5 smallest")
            model6 = gr.Model3D(label="3D Model 6", height=500)
            model7 = gr.Model3D(label="3D Model 7", height=500)
            model8 = gr.Model3D(label="3D Model 8", height=500)
            model9 = gr.Model3D(label="3D Model 9", height=500)
            model10 = gr.Model3D(label="3D Model 10", height=500)
    
    # Setup the function to be called when files are uploaded or an example is chosen
    # Reset the outputs whenever a new file is uploaded
    file_input.change(fn=reset_outputs, inputs=[], outputs=[model1, model2, model3, model4, model5, model6, model7, model8, model9, model10])
    file_input.change(fn=load_mesh_max, inputs=file_input, outputs=[model1, model2, model3, model4, model5])
    file_input.change(fn=load_mesh_min, inputs=file_input, outputs=[model6, model7, model8, model9, model10])


if __name__ == "__main__":
    demo.launch(debug=True)