Spaces:
Sleeping
Sleeping
File size: 10,015 Bytes
be033f7 4bc989c 99ebece 2157b6f 1a49332 4bc989c 99ebece 4bc989c 99ebece 4bc989c 99ebece 1a49332 99ebece 196402c 0b7b3bd 99ebece be033f7 5c05b49 be033f7 1a49332 be033f7 196402c be033f7 5c05b49 be033f7 e64683b be033f7 196402c e64683b 196402c 5c05b49 99ebece e64683b 2f52a9f e64683b 99ebece 196402c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import glob
import pickle
import numpy as np
import jax
import jax.numpy as jnp
import torch
from torch_geometric.nn import knn
import gradio as gr
import matplotlib.pyplot as plt
import open3d as o3d
import trimesh
def createPlane(normal, point_on_plane):
normal = normal / np.linalg.norm(normal)
# Find a vector in the plane
if np.allclose(normal, [1, 0, 0]):
v1 = np.cross(normal, [0, 1, 0])
else:
v1 = np.cross(normal, [1, 0, 0])
v1 = v1 / np.linalg.norm(v1)
v2 = np.cross(normal, v1)
v2 = v2 / np.linalg.norm(v2)
half_width = 1
half_height = 1
# Calculate the corners
corner1 = point_on_plane + half_width * v1 + half_height * v2
corner2 = point_on_plane - half_width * v1 + half_height * v2
corner3 = point_on_plane - half_width * v1 - half_height * v2
corner4 = point_on_plane + half_width * v1 - half_height * v2
vertices = np.array([corner1, corner2, corner3, corner4])
faces = np.array([
[0, 1, 2],
[0, 2, 3],
[2, 1, 0],
[3, 2, 0]
])
# Define the color (sky blue) with opacity (alpha)
# Define the color (sky blue) with transparency
sky_blue_with_alpha = [255, 255, 255, 128] # RGBA format, with 128 alpha for half opacity
# Set the vertex colors with transparency
vertex_colors = np.tile(sky_blue_with_alpha, (vertices.shape[0], 1))
# Create a mesh for the rectangle
plane_mesh = trimesh.Trimesh(vertices=vertices, faces=faces, vertex_colors=vertex_colors)
return plane_mesh
def reflect_points_multiple_3d(d, n, p):
points_expanded = p.unsqueeze(0).expand(n.size(0), -1, -1)
normals_expanded = n.unsqueeze(1).expand(-1, p.size(0), -1)
distances_expanded = d.unsqueeze(1).expand(-1, p.size(0))
dot_products = torch.sum(points_expanded * normals_expanded, dim=2)
# reflections: (m, n, 3)
reflections = points_expanded - 2 * (dot_products - distances_expanded).unsqueeze(2) * normals_expanded
return reflections
def reflection_point_association_3d(d, n, q, threshold):
# d in shape (m, ), n in shape (m, 3), q in shape (n, 3)
reflections = reflect_points_multiple_3d(d, n, q) # shape: (m, n, 3)
reflections = reflections.view(-1, 3) # Flatten to (m*n, 3)
# Using knn to find the closest points in q for each point in reflections
# knn finds indices of the nearest neighbors
_, indices = knn(q, reflections, k=1, batch_x=None, batch_y=None) # indices shape: (m*n, 1)
# Gather nearest points based on indices from q
nearest_points = q[indices.squeeze()] # shape: (m*n, 3)
# Calculate distances for the nearest neighbors
distances = (nearest_points - reflections).norm(dim=1) # shape: (m*n,)
# Reshape distances back to (m, n) and check threshold
distances = distances.view(d.size(0), -1) # shape: (m, n)
within_threshold = distances <= threshold # shape: (m, n), sum this along axis 1 to get the number of associated points
return within_threshold
def get_patches(points, centroids):
norm = np.linalg.norm(centroids, axis=1)
n = centroids / norm[:, None]
d = norm - 1
association = reflection_point_association_3d(torch.tensor(np.array(d)), torch.tensor(np.array(n)),
torch.tensor(np.array(points)), 0.03)
return np.array(association)
def left_right(allpoints, patchbool, planepoints):
"""
inputs: patchpoints: (n,3)
planepoints: (4,3)
outputs: leftpoints, rightpoints: (k,3), (k',3)
"""
def signed_distance(point, plane_point, normal):
return np.dot(normal, point - plane_point) / (np.linalg.norm(normal)+1e-6)
patchpoints = allpoints[patchbool]
p1 = planepoints[0]
p2 = planepoints[1]
p3 = planepoints[2]
v1 = p2 - p1
v2 = p3 - p1
normal = np.cross(v1, v2)
distances = np.array([signed_distance(point, p1, normal) for point in patchpoints])
contains_nan = np.isnan(distances).any()
l_idx = distances<0
allidcs = np.arange(len(allpoints))[patchbool]
left_idx = allidcs[l_idx]
right_idx = allidcs[~l_idx]
#left_points = patchpoints[l_idx]
#right_points = patchpoints[~l_idx]
return left_idx, right_idx#left_points, right_points
def dbscan(D, eps, MinPts):
labels = [0]*len(D)
C = 0
for P in range(0, len(D)):
if not (labels[P] == 0):
continue
NeighborPts = region_query(D, P, eps)
if len(NeighborPts) < MinPts:
labels[P] = -1
else:
C += 1
grow_cluster(D, labels, P, NeighborPts, C, eps, MinPts)
return labels
def grow_cluster(D, labels, P, NeighborPts, C, eps, MinPts):
labels[P] = C
i = 0
while i < len(NeighborPts):
Pn = NeighborPts[i]
if labels[Pn] == -1:
labels[Pn] = C
elif labels[Pn] == 0:
labels[Pn] = C
PnNeighborPts = region_query(D, Pn, eps)
if len(PnNeighborPts) >= MinPts:
NeighborPts = NeighborPts + PnNeighborPts
i += 1
def region_query(D, P, eps):
neighbors = []
for Pn in range(0, len(D)):
#if geodesic_dist(D[P], D[Pn])<eps:
if np.linalg.norm(D[P] - D[Pn]) < eps:
neighbors.append(Pn)
return neighbors
def compute_centroids(data, labels):
unique = np.unique(labels)
unique_labels = unique[unique!=-1]
centroids = []
for label in unique_labels:
mask = labels == label
points = data[mask]
centroid = jnp.mean(points, axis=0)
centroids.append(centroid)
return np.stack(centroids)
def proc_all(mesh_path, mode_path):
with open(mode_path, 'rb') as f:
fin = pickle.load(f)
name = mesh_path.split('/')[-1].split('.')[0]
mesh = trimesh.load(mesh_path)
verts = np.array(mesh.vertices)
my_labels = dbscan(fin, eps=0.1, MinPts=1)
centroid = np.array(compute_centroids(fin, my_labels))
norm = torch.norm(torch.tensor(np.array(centroid)), dim=-1)
n = centroid / norm[:,None]
d = norm - 1
point = n * d[...,None]
#pts = create_points_3d(fin, alpha = 1, markersize = 4, label = 'final timestep')
#pts2 = create_points_3d(centroid, alpha = 1, markersize = 10, label = 'final timestep')
#plot_all_3d([pts, pts2])
pats = get_patches(torch.tensor(np.array(verts)), torch.tensor(centroid))
alldicts = []
for i in range(len(n)):
plane = createPlane(n[i], point[i])
l,r = left_right(verts, pats[i], plane.vertices)
single = {'plane': plane, 'left': l, 'right': r}
alldicts.append(single)
return alldicts
def create_scene(allscenes, plane_idx):
scene = allscenes[plane_idx]
temp_file = f"/tmp/scene_{plane_idx}.obj"
scene.export(temp_file)
return temp_file
def load_mesh_max(scene_path):
dict_path = scene_path.split('/')[-1].split('.')[0][:-7] + "_dicts.pickle"
with open(dict_path, 'rb') as f:
dicts = pickle.load(f)
with open(scene_path, 'rb') as f:
scenes = pickle.load(f)
alllengths = [dic['len'] for dic in dicts]
sort_idcs = np.argsort(alllengths)
sorted_planes = np.array(scenes)[sort_idcs]
allmesh = []
for i in range(min(5, len(dicts))): # Limiting to maximum 5 outputs
temp_file = create_scene(sorted_planes, -(i+1))
allmesh.append(temp_file)
return allmesh + [None] * (5 - len(allmesh)) # Fill the rest with None if less than 5
def load_mesh_min(scene_path):
dict_path = scene_path.split('/')[-1].split('.')[0][:-7] + "_dicts.pickle"
with open(dict_path, 'rb') as f:
dicts = pickle.load(f)
with open(scene_path, 'rb') as f:
scenes = pickle.load(f)
alllengths = [dic['len'] for dic in dicts]
sort_idcs = np.argsort(alllengths)
sorted_planes = np.array(scenes)[sort_idcs]
allmesh = []
for i in range(min(5, len(dicts))): # Limiting to maximum 5 outputs
temp_file = create_scene(sorted_planes, i)
allmesh.append(temp_file)
return allmesh + [None] * (5 - len(allmesh)) # Fill the rest with None if less than 5
def reset_outputs():
# Returns a list of None, one for each 3D model output to reset them
return [None] * 10 # Adjust to the total number of Model3D components you have
examples = glob.glob("*_planes.pickle")
with gr.Blocks() as demo:
with gr.Row():
file_input = gr.File(label="Upload processed planes here")
examples_component = gr.Examples(examples=examples, inputs=file_input, outputs=None, examples_per_page=25)
with gr.Row():
with gr.Column(scale=1, min_width=600):
gr.Markdown("Top 5 largest")
model1 = gr.Model3D(label="3D Model 1", height=500)
model2 = gr.Model3D(label="3D Model 2", height=500)
model3 = gr.Model3D(label="3D Model 3", height=500)
model4 = gr.Model3D(label="3D Model 4", height=500)
model5 = gr.Model3D(label="3D Model 5", height=500)
with gr.Column(scale=1, min_width=600):
gr.Markdown("Top 5 smallest")
model6 = gr.Model3D(label="3D Model 6", height=500)
model7 = gr.Model3D(label="3D Model 7", height=500)
model8 = gr.Model3D(label="3D Model 8", height=500)
model9 = gr.Model3D(label="3D Model 9", height=500)
model10 = gr.Model3D(label="3D Model 10", height=500)
# Setup the function to be called when files are uploaded or an example is chosen
# Reset the outputs whenever a new file is uploaded
file_input.change(fn=reset_outputs, inputs=[], outputs=[model1, model2, model3, model4, model5, model6, model7, model8, model9, model10])
file_input.change(fn=load_mesh_max, inputs=file_input, outputs=[model1, model2, model3, model4, model5])
file_input.change(fn=load_mesh_min, inputs=file_input, outputs=[model6, model7, model8, model9, model10])
if __name__ == "__main__":
demo.launch(debug=True)
|