Spaces:
Sleeping
Sleeping
gradio updated
Browse files- app.py +258 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import jax
|
2 |
+
import numpy as np
|
3 |
+
import jax.numpy as jnp
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from functools import partial
|
6 |
+
import torch
|
7 |
+
from torch_geometric.nn import knn
|
8 |
+
import gradio as gr
|
9 |
+
import os
|
10 |
+
import glob
|
11 |
+
import pickle
|
12 |
+
import time
|
13 |
+
import cv2
|
14 |
+
import numpy as np
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
+
import plotly.graph_objects as go
|
17 |
+
import open3d as o3d
|
18 |
+
import trimesh
|
19 |
+
import gradio
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
def createPlane(normal, point_on_plane):
|
24 |
+
normal = normal / np.linalg.norm(normal)
|
25 |
+
|
26 |
+
# Find a vector in the plane
|
27 |
+
if np.allclose(normal, [1, 0, 0]):
|
28 |
+
v1 = np.cross(normal, [0, 1, 0])
|
29 |
+
else:
|
30 |
+
v1 = np.cross(normal, [1, 0, 0])
|
31 |
+
|
32 |
+
v1 = v1 / np.linalg.norm(v1)
|
33 |
+
v2 = np.cross(normal, v1)
|
34 |
+
v2 = v2 / np.linalg.norm(v2)
|
35 |
+
|
36 |
+
half_width = 1
|
37 |
+
half_height = 1
|
38 |
+
|
39 |
+
# Calculate the corners
|
40 |
+
corner1 = point_on_plane + half_width * v1 + half_height * v2
|
41 |
+
corner2 = point_on_plane - half_width * v1 + half_height * v2
|
42 |
+
corner3 = point_on_plane - half_width * v1 - half_height * v2
|
43 |
+
corner4 = point_on_plane + half_width * v1 - half_height * v2
|
44 |
+
|
45 |
+
vertices = np.array([corner1, corner2, corner3, corner4])
|
46 |
+
|
47 |
+
faces = np.array([
|
48 |
+
[0, 1, 2],
|
49 |
+
[0, 2, 3],
|
50 |
+
[2, 1, 0],
|
51 |
+
[3, 2, 0]
|
52 |
+
])
|
53 |
+
# Define the color (sky blue) with opacity (alpha)
|
54 |
+
# Define the color (sky blue) with transparency
|
55 |
+
sky_blue_with_alpha = [255, 255, 255, 128] # RGBA format, with 128 alpha for half opacity
|
56 |
+
|
57 |
+
# Set the vertex colors with transparency
|
58 |
+
vertex_colors = np.tile(sky_blue_with_alpha, (vertices.shape[0], 1))
|
59 |
+
|
60 |
+
# Create a mesh for the rectangle
|
61 |
+
plane_mesh = trimesh.Trimesh(vertices=vertices, faces=faces, vertex_colors=vertex_colors)
|
62 |
+
return plane_mesh
|
63 |
+
|
64 |
+
def reflect_points_multiple_3d(d, n, p):
|
65 |
+
points_expanded = p.unsqueeze(0).expand(n.size(0), -1, -1)
|
66 |
+
normals_expanded = n.unsqueeze(1).expand(-1, p.size(0), -1)
|
67 |
+
distances_expanded = d.unsqueeze(1).expand(-1, p.size(0))
|
68 |
+
dot_products = torch.sum(points_expanded * normals_expanded, dim=2)
|
69 |
+
# reflections: (m, n, 3)
|
70 |
+
reflections = points_expanded - 2 * (dot_products - distances_expanded).unsqueeze(2) * normals_expanded
|
71 |
+
|
72 |
+
return reflections
|
73 |
+
|
74 |
+
def reflection_point_association_3d(d, n, q, threshold):
|
75 |
+
# d in shape (m, ), n in shape (m, 3), q in shape (n, 3)
|
76 |
+
reflections = reflect_points_multiple_3d(d, n, q) # shape: (m, n, 3)
|
77 |
+
reflections = reflections.view(-1, 3) # Flatten to (m*n, 3)
|
78 |
+
|
79 |
+
# Using knn to find the closest points in q for each point in reflections
|
80 |
+
# knn finds indices of the nearest neighbors
|
81 |
+
_, indices = knn(q, reflections, k=1, batch_x=None, batch_y=None) # indices shape: (m*n, 1)
|
82 |
+
|
83 |
+
# Gather nearest points based on indices from q
|
84 |
+
nearest_points = q[indices.squeeze()] # shape: (m*n, 3)
|
85 |
+
|
86 |
+
# Calculate distances for the nearest neighbors
|
87 |
+
distances = (nearest_points - reflections).norm(dim=1) # shape: (m*n,)
|
88 |
+
|
89 |
+
# Reshape distances back to (m, n) and check threshold
|
90 |
+
distances = distances.view(d.size(0), -1) # shape: (m, n)
|
91 |
+
within_threshold = distances <= threshold # shape: (m, n), sum this along axis 1 to get the number of associated points
|
92 |
+
return within_threshold
|
93 |
+
|
94 |
+
def get_patches(points, centroids):
|
95 |
+
norm = np.linalg.norm(centroids, axis=1)
|
96 |
+
n = centroids / norm[:, None]
|
97 |
+
d = norm - 1
|
98 |
+
|
99 |
+
association = reflection_point_association_3d(torch.tensor(np.array(d)), torch.tensor(np.array(n)),
|
100 |
+
torch.tensor(np.array(points)), 0.03)
|
101 |
+
|
102 |
+
return np.array(association)
|
103 |
+
|
104 |
+
def left_right(allpoints, patchbool, planepoints):
|
105 |
+
"""
|
106 |
+
inputs: patchpoints: (n,3)
|
107 |
+
planepoints: (4,3)
|
108 |
+
outputs: leftpoints, rightpoints: (k,3), (k',3)
|
109 |
+
"""
|
110 |
+
def signed_distance(point, plane_point, normal):
|
111 |
+
return np.dot(normal, point - plane_point) / (np.linalg.norm(normal)+1e-6)
|
112 |
+
patchpoints = allpoints[patchbool]
|
113 |
+
p1 = planepoints[0]
|
114 |
+
p2 = planepoints[1]
|
115 |
+
p3 = planepoints[2]
|
116 |
+
v1 = p2 - p1
|
117 |
+
v2 = p3 - p1
|
118 |
+
normal = np.cross(v1, v2)
|
119 |
+
|
120 |
+
distances = np.array([signed_distance(point, p1, normal) for point in patchpoints])
|
121 |
+
contains_nan = np.isnan(distances).any()
|
122 |
+
l_idx = distances<0
|
123 |
+
allidcs = np.arange(len(allpoints))[patchbool]
|
124 |
+
left_idx = allidcs[l_idx]
|
125 |
+
right_idx = allidcs[~l_idx]
|
126 |
+
|
127 |
+
#left_points = patchpoints[l_idx]
|
128 |
+
#right_points = patchpoints[~l_idx]
|
129 |
+
|
130 |
+
|
131 |
+
return left_idx, right_idx#left_points, right_points
|
132 |
+
|
133 |
+
def dbscan(D, eps, MinPts):
|
134 |
+
labels = [0]*len(D)
|
135 |
+
C = 0
|
136 |
+
for P in range(0, len(D)):
|
137 |
+
if not (labels[P] == 0):
|
138 |
+
continue
|
139 |
+
NeighborPts = region_query(D, P, eps)
|
140 |
+
if len(NeighborPts) < MinPts:
|
141 |
+
labels[P] = -1
|
142 |
+
else:
|
143 |
+
C += 1
|
144 |
+
grow_cluster(D, labels, P, NeighborPts, C, eps, MinPts)
|
145 |
+
return labels
|
146 |
+
|
147 |
+
def grow_cluster(D, labels, P, NeighborPts, C, eps, MinPts):
|
148 |
+
labels[P] = C
|
149 |
+
i = 0
|
150 |
+
while i < len(NeighborPts):
|
151 |
+
Pn = NeighborPts[i]
|
152 |
+
if labels[Pn] == -1:
|
153 |
+
labels[Pn] = C
|
154 |
+
elif labels[Pn] == 0:
|
155 |
+
labels[Pn] = C
|
156 |
+
PnNeighborPts = region_query(D, Pn, eps)
|
157 |
+
if len(PnNeighborPts) >= MinPts:
|
158 |
+
NeighborPts = NeighborPts + PnNeighborPts
|
159 |
+
|
160 |
+
i += 1
|
161 |
+
|
162 |
+
def region_query(D, P, eps):
|
163 |
+
neighbors = []
|
164 |
+
for Pn in range(0, len(D)):
|
165 |
+
#if geodesic_dist(D[P], D[Pn])<eps:
|
166 |
+
if np.linalg.norm(D[P] - D[Pn]) < eps:
|
167 |
+
neighbors.append(Pn)
|
168 |
+
|
169 |
+
return neighbors
|
170 |
+
|
171 |
+
def compute_centroids(data, labels):
|
172 |
+
unique = np.unique(labels)
|
173 |
+
unique_labels = unique[unique!=-1]
|
174 |
+
centroids = []
|
175 |
+
for label in unique_labels:
|
176 |
+
mask = labels == label
|
177 |
+
points = data[mask]
|
178 |
+
centroid = jnp.mean(points, axis=0)
|
179 |
+
centroids.append(centroid)
|
180 |
+
return np.stack(centroids)
|
181 |
+
|
182 |
+
|
183 |
+
def proc_all(mesh_path, mode_path):
|
184 |
+
with open(mode_path, 'rb') as f:
|
185 |
+
fin = pickle.load(f)
|
186 |
+
name = mesh_path.split('/')[-1].split('.')[0]
|
187 |
+
mesh = trimesh.load(mesh_path)
|
188 |
+
verts = np.array(mesh.vertices)
|
189 |
+
|
190 |
+
my_labels = dbscan(fin, eps=0.1, MinPts=1)
|
191 |
+
centroid = np.array(compute_centroids(fin, my_labels))
|
192 |
+
print("total number of modes found: " + str(len(centroid)))
|
193 |
+
|
194 |
+
norm = torch.norm(torch.tensor(np.array(centroid)), dim=-1)
|
195 |
+
n = centroid / norm[:,None]
|
196 |
+
d = norm - 1
|
197 |
+
point = n * d[...,None]
|
198 |
+
|
199 |
+
#pts = create_points_3d(fin, alpha = 1, markersize = 4, label = 'final timestep')
|
200 |
+
#pts2 = create_points_3d(centroid, alpha = 1, markersize = 10, label = 'final timestep')
|
201 |
+
#plot_all_3d([pts, pts2])
|
202 |
+
|
203 |
+
pats = get_patches(torch.tensor(np.array(verts)), torch.tensor(centroid))
|
204 |
+
alldicts = []
|
205 |
+
pntdict = {}
|
206 |
+
for i in range(len(n)):
|
207 |
+
plane = createPlane(n[i], point[i])
|
208 |
+
l,r = left_right(verts, pats[i], plane.vertices)
|
209 |
+
single = {'plane': plane, 'left': l, 'right': r}
|
210 |
+
alldicts.append(single)
|
211 |
+
return alldicts
|
212 |
+
|
213 |
+
def create_scene(mesh_path, dicts, plane_idx):
|
214 |
+
mesh = trimesh.load(mesh_path)
|
215 |
+
verts = np.array(mesh.vertices)
|
216 |
+
colors = []
|
217 |
+
for i in range(len(verts)):
|
218 |
+
if i in dicts[plane_idx]['left']:
|
219 |
+
color = [8, 136, 255]
|
220 |
+
elif i in dicts[plane_idx]['right']:
|
221 |
+
color = [204, 20, 245]
|
222 |
+
else:
|
223 |
+
color = [225, 225, 225]
|
224 |
+
colors.append(color)
|
225 |
+
|
226 |
+
mesh.visual.vertex_colors = colors
|
227 |
+
newplane = dicts[plane_idx]['plane']
|
228 |
+
newplane.visual.vertex_colors = np.tile([100, 100, 100, 100], (4, 1))
|
229 |
+
scene = trimesh.Scene([mesh, newplane])
|
230 |
+
temp_file = f"/tmp/scene_{plane_idx}.obj"
|
231 |
+
scene.export(temp_file)
|
232 |
+
return temp_file
|
233 |
+
|
234 |
+
def load_mesh(mesh_file_name, mode_file_name):
|
235 |
+
|
236 |
+
dicts = proc_all(mesh_file_name, mode_file_name) # Assuming proc_all is defined and returns a list of dictionaries
|
237 |
+
allmesh = []
|
238 |
+
for i in range(min(5, len(dicts))): # Limiting to maximum 5 outputs
|
239 |
+
temp_file = create_scene(mesh_file_name, dicts, i)
|
240 |
+
allmesh.append(temp_file)
|
241 |
+
return allmesh + [None] * (5 - len(allmesh)) # Fill the rest with None if less than 5
|
242 |
+
|
243 |
+
examples = [["mesh_rescaled/" + mesh, "out_3d/" + mesh.split('.')[0] + "_50000_0.1_modes.pickle"] for mesh in os.listdir("mesh_rescaled/")]
|
244 |
+
|
245 |
+
outputs = [gr.Model3D(label=f"3D Model {i+1}") for i in range(10)]
|
246 |
+
|
247 |
+
demo = gr.Interface(
|
248 |
+
fn=load_mesh,
|
249 |
+
inputs=[gr.File(label="Upload Mesh"), gr.File(label="Upload Mode File")],
|
250 |
+
outputs=outputs,
|
251 |
+
examples=examples,
|
252 |
+
cache_examples=False # Set to False to ensure it doesn't cache examples, requires actual file uploads
|
253 |
+
)
|
254 |
+
|
255 |
+
if __name__ == "__main__":
|
256 |
+
demo.launch()
|
257 |
+
|
258 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
trimesh
|
2 |
+
open3d
|
3 |
+
torch_geometric
|
4 |
+
pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.3.0+cu121.html
|