Neel kamal sahu
first commit of NSFW classification
6606691
raw
history blame
1.21 kB
import gradio as gr
import numpy as np
import urllib
from keras.preprocessing import image
from keras.models import load_model
# Load the pre-trained model
model = load_model('my_model.h5')
CATEGORIES = ("NSFW", "SFW")
def classify_image(img):
# Preprocess the input image
img = image.img_to_array(img)
img = np.expand_dims(img, axis=0)
img /= 255.0
# Use the model to make a prediction
prediction = model.predict(img)
print(prediction)
# Map the predicted class to a label
if prediction[0][0] >= 0.5:
label = "SFW"
else:
label = "NSFW"
return label
def classify_url(url):
# Load the image from the URL
response = urllib.request.urlopen(url)
img = image.load_img(response, target_size=(224, 224))
return classify_image(img)
# Define the GRADIO input interface
#inputs = gr.inputs.Image(shape=(224, 224, 3))
# Define the GRADIO output interface
#outputs = gr.outputs.Textbox(lines=1, default="SFW")
# Define the GRADIO app
app = gr.Interface(classify_image, gr.Image(shape=(224, 224)), outputs=gr.Label(label="Type of Image"), allow_flagging="never", title="NSFW/SFW Classifier")
# Start the GRADIO app
app.launch()