Neel kamal sahu commited on
Commit
6606691
·
1 Parent(s): bed9229

first commit of NSFW classification

Browse files
Files changed (2) hide show
  1. app.py +45 -0
  2. my_model.h5 +3 -0
app.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import urllib
4
+ from keras.preprocessing import image
5
+ from keras.models import load_model
6
+
7
+ # Load the pre-trained model
8
+ model = load_model('my_model.h5')
9
+ CATEGORIES = ("NSFW", "SFW")
10
+ def classify_image(img):
11
+ # Preprocess the input image
12
+ img = image.img_to_array(img)
13
+ img = np.expand_dims(img, axis=0)
14
+ img /= 255.0
15
+
16
+ # Use the model to make a prediction
17
+ prediction = model.predict(img)
18
+ print(prediction)
19
+ # Map the predicted class to a label
20
+ if prediction[0][0] >= 0.5:
21
+ label = "SFW"
22
+ else:
23
+ label = "NSFW"
24
+
25
+ return label
26
+
27
+ def classify_url(url):
28
+ # Load the image from the URL
29
+ response = urllib.request.urlopen(url)
30
+ img = image.load_img(response, target_size=(224, 224))
31
+
32
+ return classify_image(img)
33
+
34
+ # Define the GRADIO input interface
35
+ #inputs = gr.inputs.Image(shape=(224, 224, 3))
36
+
37
+ # Define the GRADIO output interface
38
+ #outputs = gr.outputs.Textbox(lines=1, default="SFW")
39
+
40
+ # Define the GRADIO app
41
+ app = gr.Interface(classify_image, gr.Image(shape=(224, 224)), outputs=gr.Label(label="Type of Image"), allow_flagging="never", title="NSFW/SFW Classifier")
42
+
43
+ # Start the GRADIO app
44
+ app.launch()
45
+
my_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7117e488bc01eca0c8dbb644cafa4d7f0b0b559b873500e507ad2be32dd8d6a3
3
+ size 2245216