wzkariampuzha commited on
Commit
71c29ef
·
1 Parent(s): 490c9b8

Update classify_abs.py

Browse files
Files changed (1) hide show
  1. classify_abs.py +8 -9
classify_abs.py CHANGED
@@ -290,7 +290,7 @@ def streamlit_getAbs(searchterm_list:Union[List[str],List[int],str], maxResults:
290
  else:
291
  searchterm_list = list(searchterm_list)
292
  #maxResults is multiplied by a little bit because sometimes the results returned is more than maxResults
293
- percent_by_step = 1/(maxResults*1.05)
294
  with st.spinner("Gathering PubMed IDs..."):
295
  PMIDs_bar = st.progress(0)
296
  for dz in searchterm_list:
@@ -328,7 +328,7 @@ def streamlit_getAbs(searchterm_list:Union[List[str],List[int],str], maxResults:
328
 
329
  with st.spinner("Found "+str(len(pmids))+" PMIDs. Gathering Abstracts and Filtering..."):
330
  abstracts_bar = st.progress(0)
331
- percent_by_step = 1/(maxResults)
332
  if filtering !='none' or filtering !='strict':
333
  filter_terms = set(searchterm_list).union(set(str(re.sub(',','',' '.join(searchterm_list))).split()).difference(STOPWORDS))
334
 
@@ -340,23 +340,22 @@ def streamlit_getAbs(searchterm_list:Union[List[str],List[int],str], maxResults:
340
  uncased_ab = abstract.lower()
341
  for term in searchterm_list:
342
  if term.lower() in uncased_ab:
343
- pmid_abs[pmid] = abstract
344
- abstracts_bar.progress(min(round(len(pmid_abs)*percent_by_step,1),1.0))
345
  break
346
  elif filtering =='none':
347
  pmid_abs[pmid] = abstract
348
- abstracts_bar.progress(min(round(len(pmid_abs)*percent_by_step,1),1.0))
349
-
350
  #Default filtering is 'lenient'.
351
  else:
352
  #Else and if are separated for readability and to better understand logical flow.
353
  if set(filter_terms).intersection(set(word_tokenize(abstract))):
354
  pmid_abs[pmid] = abstract
355
- abstracts_bar.progress(min(round(len(pmid_abs)*percent_by_step,1),1.0))
356
  abstracts_bar.empty()
357
- st.success('Found '+str(len(pmids))+' PMIDs. Gathered '+str(len(pmid_abs))+' Relevant Abstracts. Classifying and extracting epidemiology information...')
 
 
358
 
359
- return pmid_abs, (len(pmids),len(pmid_abs))
360
 
361
  # Generate predictions for a PubMed Id
362
  # nlp: en_core_web_lg
 
290
  else:
291
  searchterm_list = list(searchterm_list)
292
  #maxResults is multiplied by a little bit because sometimes the results returned is more than maxResults
293
+ percent_by_step = 1/maxResults
294
  with st.spinner("Gathering PubMed IDs..."):
295
  PMIDs_bar = st.progress(0)
296
  for dz in searchterm_list:
 
328
 
329
  with st.spinner("Found "+str(len(pmids))+" PMIDs. Gathering Abstracts and Filtering..."):
330
  abstracts_bar = st.progress(0)
331
+ percent_by_step = 1/maxResults
332
  if filtering !='none' or filtering !='strict':
333
  filter_terms = set(searchterm_list).union(set(str(re.sub(',','',' '.join(searchterm_list))).split()).difference(STOPWORDS))
334
 
 
340
  uncased_ab = abstract.lower()
341
  for term in searchterm_list:
342
  if term.lower() in uncased_ab:
343
+ pmid_abs[pmid] = abstract
 
344
  break
345
  elif filtering =='none':
346
  pmid_abs[pmid] = abstract
 
 
347
  #Default filtering is 'lenient'.
348
  else:
349
  #Else and if are separated for readability and to better understand logical flow.
350
  if set(filter_terms).intersection(set(word_tokenize(abstract))):
351
  pmid_abs[pmid] = abstract
352
+ abstracts_bar.progress(min(round(len(pmid_abs)*percent_by_step,1),1.0))
353
  abstracts_bar.empty()
354
+ found = len(pmids)
355
+ relevant = len(pmid_abs)
356
+ st.success('Found '+str(found)+' PMIDs. Gathered '+str(relevant)+' Relevant Abstracts. Classifying and extracting epidemiology information...')
357
 
358
+ return pmid_abs, (found, relevant)
359
 
360
  # Generate predictions for a PubMed Id
361
  # nlp: en_core_web_lg