wzkariampuzha commited on
Commit
490c9b8
·
1 Parent(s): d2c6d3e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -7
app.py CHANGED
@@ -1,7 +1,7 @@
1
  import nltk
2
- nltk.data.path.append("/home/user/app/nltk_data/")
3
- nltk.data.path.append("/home/user/app/nltk_data")
4
- nltk.data.path.append("home/user/app/nltk_data")
5
  nltk.data.path.append("home/user/app/nltk_data/")
6
  #nltk.download('stopwords')
7
  #nltk.download('punkt')
@@ -97,6 +97,7 @@ def epi_sankey(sankey_data, disease_or_gard_id):
97
  value = [relevant, gathered-relevant, epidemiologic, relevant-epidemiologic]
98
  ))])
99
  fig.update_layout(
 
100
  hovermode = 'x',
101
  title="Search for the Epidemiology of "+disease_or_gard_id,
102
  font=dict(size = 10, color = 'black'),
@@ -121,6 +122,7 @@ if disease_or_gard_id:
121
  NER_pipeline, entity_classes,
122
  extract_diseases,GARD_dict, max_length,
123
  classify_model_vars)
 
124
  st.dataframe(df, height=200)
125
  csv = convert_df(df)
126
  st.download_button(
@@ -129,6 +131,10 @@ if disease_or_gard_id:
129
  file_name=disease_or_gard_id+'.csv',
130
  mime='text/csv',
131
  )
 
 
 
 
132
  if 'IDS' in list(df.columns):
133
  st.markdown('''COLUMNS: \\
134
  - PROB_OF_EPI: Probability that the paper is an epidemiologic study based on its abstract. \\
@@ -145,7 +151,4 @@ if disease_or_gard_id:
145
  else:
146
  st.subheader("Categories of Results")
147
  st.markdown(" - **PROB_OF_EPI**: Probability that the paper is an epidemiologic study based on its abstract. \n - **IsEpi**: If it is an epidemiologic study (If PROB_OF_EPI >0.5) \n - **EPI**: Epidemiology Types are the metrics used to estimate disease burden such as 'incidence', 'prevalence rate', or 'occurrence' \n - **STAT**: Epidemiology Rates describe how many people are afflicted by a disease. \n - **DATE**: The dates when the epidemiologic studies were conducted \n - **LOC**: Where the epidemiologic studies were conducted. \n - **SEX**: The biological sexes mentioned in the abstract. Useful for diseases that disproportionately affect one sex over the other or may provide context to composition of the study population \n - **ETHN**: Ethnicities, races, and nationalities of those represented in the epidemiologic study.")
148
- #st.dataframe(data=None, width=None, height=None)
149
- fig = epi_sankey(sankey_data,disease_or_gard_id)
150
-
151
- st.plotly_chart(fig, use_container_width=True)
 
1
  import nltk
2
+ #nltk.data.path.append("/home/user/app/nltk_data/")
3
+ #nltk.data.path.append("/home/user/app/nltk_data")
4
+ #nltk.data.path.append("home/user/app/nltk_data")
5
  nltk.data.path.append("home/user/app/nltk_data/")
6
  #nltk.download('stopwords')
7
  #nltk.download('punkt')
 
97
  value = [relevant, gathered-relevant, epidemiologic, relevant-epidemiologic]
98
  ))])
99
  fig.update_layout(
100
+ hoverinfo ='none',
101
  hovermode = 'x',
102
  title="Search for the Epidemiology of "+disease_or_gard_id,
103
  font=dict(size = 10, color = 'black'),
 
122
  NER_pipeline, entity_classes,
123
  extract_diseases,GARD_dict, max_length,
124
  classify_model_vars)
125
+ df.replace(to_replace=None, value="None")
126
  st.dataframe(df, height=200)
127
  csv = convert_df(df)
128
  st.download_button(
 
131
  file_name=disease_or_gard_id+'.csv',
132
  mime='text/csv',
133
  )
134
+
135
+ fig = epi_sankey(sankey_data,disease_or_gard_id)
136
+ st.plotly_chart(fig, use_container_width=True)
137
+
138
  if 'IDS' in list(df.columns):
139
  st.markdown('''COLUMNS: \\
140
  - PROB_OF_EPI: Probability that the paper is an epidemiologic study based on its abstract. \\
 
151
  else:
152
  st.subheader("Categories of Results")
153
  st.markdown(" - **PROB_OF_EPI**: Probability that the paper is an epidemiologic study based on its abstract. \n - **IsEpi**: If it is an epidemiologic study (If PROB_OF_EPI >0.5) \n - **EPI**: Epidemiology Types are the metrics used to estimate disease burden such as 'incidence', 'prevalence rate', or 'occurrence' \n - **STAT**: Epidemiology Rates describe how many people are afflicted by a disease. \n - **DATE**: The dates when the epidemiologic studies were conducted \n - **LOC**: Where the epidemiologic studies were conducted. \n - **SEX**: The biological sexes mentioned in the abstract. Useful for diseases that disproportionately affect one sex over the other or may provide context to composition of the study population \n - **ETHN**: Ethnicities, races, and nationalities of those represented in the epidemiologic study.")
154
+ #st.dataframe(data=None, width=None, height=None)