File size: 2,197 Bytes
d7784f0
 
47e9ce2
ddff90b
 
7ce5b82
ddff90b
7ce5b82
ddff90b
 
0416a61
f2852e3
847adc5
0416a61
e7caceb
6d2e57c
e7caceb
 
6d2e57c
e7caceb
388fbdd
e7caceb
 
388fbdd
 
e7caceb
6d2e57c
e7caceb
 
 
6d2e57c
f2852e3
38efeba
847adc5
f2852e3
0416a61
f2852e3
ddff90b
388fbdd
 
 
 
 
 
 
 
 
 
 
f2852e3
6d2e57c
7ead1f4
6d2e57c
916be64
0416a61
 
 
 
3ed57d7
1656abd
 
f2852e3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import nltk
nltk.download('stopwords')
nltk.download('punkt')
import pandas as pd
#classify_abs is a dependency for extract_abs
import classify_abs
import extract_abs
#pd.set_option('display.max_colwidth', None)
import streamlit as st

########## Title for the Web App ##########
st.title("Epidemiology Extraction Pipeline for Rare Diseases")
st.subheader("National Center for Advancing Translational Sciences (NIH/NCATS)") 


#### CHANGE SIDEBAR WIDTH ###
st.markdown(
    """
    <style>
    [data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
        width: 275px;
    }
    [data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
        width: 275px;
        margin-left: -400px;
    }
    </style>
    """,
    unsafe_allow_html=True,
)

#max_results is Maximum number of PubMed ID's to retrieve BEFORE filtering
max_results = st.sidebar.number_input("Maximum number of articles to find in PubMed", min_value=1, max_value=None, value=50)

filtering = st.sidebar.radio("What type of filtering would you like?",('Strict', 'Lenient', 'None'))

extract_diseases = st.sidebar.checkbox("Extract Rare Diseases", value=False)

@st.cache(suppress_st_warning=True)
def load_models():
    global classify_model_vars, NER_pipeline, entity_classes, GARD_dict, max_length
    
    with st.spinner('Loading Epidemiology Models and Dependencies...'):
        classify_model_vars = classify_abs.init_classify_model()
        NER_pipeline, entity_classes = extract_abs.init_NER_pipeline()
        GARD_dict, max_length = extract_abs.load_GARD_diseases()
    st.success('All Models and Dependencies Loaded!')

load_models()

disease_or_gard_id = st.text_input("Input a rare disease term or GARD ID.", value="Fellman syndrome")

if disease_or_gard_id:
  df = extract_abs.streamlit_extraction(disease_or_gard_id, max_results, filtering,
                                           NER_pipeline, entity_classes, 
                                           extract_diseases,GARD_dict, max_length, 
                                           classify_model_vars)
  st.dataframe(df)
  st.balloons()
  #st.dataframe(data=None, width=None, height=None)
  
# st.code(body, language="python")