pictero / app.py
n42's picture
using class as config
58f80cc
raw
history blame
15 kB
import gradio as gr
import io
import base64
from flask import Flask, render_template, request, send_file, jsonify
import torch
import json
from PIL import Image
from diffusers import DiffusionPipeline
from diffusers import (
DDPMScheduler,
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
DPMSolverMultistepScheduler,
)
import threading
import requests
from flask import Flask, render_template_string
from gradio import Interface
from diffusers import AutoencoderKL
import pandas as pd
import base64
from config import Config
config = Config()
def device_change(device):
return config.set_config('device', device), config.assemble_code()
def models_change(model, scheduler):
use_safetensors = False
# no model selected (because this is UI init run)
if type(model) != list and model is not None:
use_safetensors = str(config.model_configs[model]['use_safetensors'])
# if no scheduler is selected, choose the default one for this model
if scheduler == None:
scheduler = config.model_configs[model]['scheduler']
safety_checker_change(config.current["safety_checker"])
requires_safety_checker_change(config.current["requires_safety_checker"])
return use_safetensors, scheduler, config.set_config('model', model), config.assemble_code()
def data_type_change(data_type):
return config.set_config('data_type', data_type), config.assemble_code()
def get_data_type(str_data_type):
if str_data_type == "bfloat16":
return torch.bfloat16 # BFloat16 is not supported on MPS as of 01/2024
else:
return torch.float16 # Half-precision weights, as of https://huggingface.co/docs/diffusers/main/en/optimization/fp16 will save GPU memory
def tensorfloat32_change(allow_tensorfloat32):
return config.set_config('allow_tensorfloat32', allow_tensorfloat32), config.assemble_code()
def inference_steps_change(inference_steps):
return config.set_config('inference_steps', inference_steps), config.assemble_code()
def manual_seed_change(manual_seed):
return config.set_config('manual_seed', manual_seed), config.assemble_code()
def guidance_scale_change(guidance_scale):
return config.set_config('guidance_scale', guidance_scale), config.assemble_code()
def prompt_change(prompt):
return config.set_config('prompt', prompt), config.assemble_code()
def negative_prompt_change(negative_prompt):
return config.set_config('negative_prompt', negative_prompt), config.assemble_code()
def variant_change(variant):
return config.set_config('variant', variant), config.assemble_code()
def safety_checker_change(safety_checker):
return config.set_config('safety_checker', safety_checker), config.assemble_code()
def requires_safety_checker_change(requires_safety_checker):
return config.set_config('requires_safety_checker', requires_safety_checker), config.assemble_code()
def schedulers_change(scheduler):
return config.get_scheduler_description(scheduler), config.set_config('scheduler', scheduler), config.assemble_code()
def get_tensorfloat32(allow_tensorfloat32):
return True if str(allow_tensorfloat32).lower() == 'true' else False
def get_scheduler(scheduler, config):
if scheduler == "DDPMScheduler":
return DDPMScheduler.from_config(config)
elif scheduler == "DDIMScheduler":
return DDIMScheduler.from_config(config)
elif scheduler == "PNDMScheduler":
return PNDMScheduler.from_config(config)
elif scheduler == "LMSDiscreteScheduler":
return LMSDiscreteScheduler.from_config(config)
elif scheduler == "EulerAncestralDiscreteScheduler":
return EulerAncestralDiscreteScheduler.from_config(config)
elif scheduler == "EulerDiscreteScheduler":
return EulerDiscreteScheduler.from_config(config)
elif scheduler == "DPMSolverMultistepScheduler":
return DPMSolverMultistepScheduler.from_config(config)
else:
return DPMSolverMultistepScheduler.from_config(config)
# get
# - initial configuration,
# - a list of available devices from the config file
# - a list of available models from the config file
# - a list of available schedulers from the config file
# - a dict that contains code to for reproduction
config.set_inital_config()
# config.current, devices, model_configs, scheduler_configs, code = config.get_inital_config()
# device = config.current["device"]
# model = config.current["model"]
# scheduler = config.current["scheduler"]
# variant = config.current["variant"]
# allow_tensorfloat32 = config.current["allow_tensorfloat32"]
# use_safetensors = config.current["use_safetensors"]
# data_type = config.current["data_type"]
# safety_checker = config.current["safety_checker"]
# requires_safety_checker = config.current["requires_safety_checker"]
# manual_seed = config.current["manual_seed"]
# inference_steps = config.current["inference_steps"]
# guidance_scale = config.current["guidance_scale"]
# prompt = config.current["prompt"]
# negative_prompt = config.current["negative_prompt"]
config_history = []
# pipeline
def run_inference(model,
device,
use_safetensors,
data_type,
variant,
safety_checker,
requires_safety_checker,
scheduler,
prompt,
negative_prompt,
inference_steps,
manual_seed,
guidance_scale,
progress=gr.Progress(track_tqdm=True)):
if config.current["model"] != None and config.current["scheduler"] != None:
progress((1,3), desc="Preparing pipeline initialization...")
torch.backends.cuda.matmul.allow_tf32 = config.current["allow_tensorfloat32"] # Use TensorFloat-32 as of https://huggingface.co/docs/diffusers/main/en/optimization/fp16 faster, but slightly less accurate computations
progress((2,3), desc="Initializing pipeline...")
pipeline = DiffusionPipeline.from_pretrained(
config.current["model"],
use_safetensors=config.current["use_safetensors"],
torch_dtype=get_data_type(config.current["data_type"]),
variant=variant).to(config.current["device"])
if config.current["safety_checker"] is None or str(config.current["safety_checker"]).lower == 'false':
pipeline.safety_checker = None
pipeline.requires_safety_checker = config.current["requires_safety_checker"]
pipeline.scheduler = get_scheduler(scheduler, pipeline.scheduler.config)
manual_seed = int(manual_seed)
if manual_seed < 0 or manual_seed is None or manual_seed == '':
generator = torch.Generator(device)
else:
generator = torch.manual_seed(42)
progress((3,3), desc="Creating the result...")
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
generator=generator,
num_inference_steps=int(inference_steps),
guidance_scale=float(guidance_scale)).images[0]
config_history.append(config.current.copy())
return image, dict_list_to_markdown_table(config_history)
else:
return "Please select a model AND a scheduler.", None
def dict_list_to_markdown_table(config_history):
if not config_history:
return ""
headers = list(config_history[0].keys())
markdown_table = "| share | " + " | ".join(headers) + " |\n"
markdown_table += "| --- | " + " | ".join(["---"] * len(headers)) + " |\n"
for index, config in enumerate(config_history):
encoded_config = base64.b64encode(str(config).encode()).decode()
share_link = f'<a target="_blank" href="?config={encoded_config}">📎</a>'
markdown_table += f"| {share_link} | " + " | ".join(str(config.get(key, "")) for key in headers) + " |\n"
markdown_table = '<div style="overflow-x: auto;">\n\n' + markdown_table + '</div>'
return markdown_table
# interface
with gr.Blocks() as demo:
gr.Markdown('''## Text-2-Image Playground
<small>by <a target="_blank" href="https://www.linkedin.com/in/nickyreinert/">Nicky Reinert</a> |
home base: https://huggingface.co/spaces/n42/pictero
</small>''')
gr.Markdown("### Device specific settings")
with gr.Row():
in_devices = gr.Dropdown(label="Device:", value=config.current["device"], choices=config.devices, filterable=True, multiselect=False, allow_custom_value=True)
in_data_type = gr.Radio(label="Data Type:", value=config.current["data_type"], choices=["bfloat16", "float16"], info="`bfloat16` is not supported on MPS devices right now; Half-precision weights, will save GPU memory, see https://huggingface.co/docs/diffusers/main/en/optimization/fp16")
in_allow_tensorfloat32 = gr.Radio(label="Allow TensorFloat32:", value=config.current["allow_tensorfloat32"], choices=[True, False], info="is not supported on MPS devices right now; use TensorFloat-32 is faster, but results in slightly less accurate computations, see https://huggingface.co/docs/diffusers/main/en/optimization/fp16 ")
in_variant = gr.Radio(label="Variant:", value=config.current["variant"], choices=["fp16", None], info="Use half-precision weights will save GPU memory, not all models support that, see https://huggingface.co/docs/diffusers/main/en/optimization/fp16 ")
gr.Markdown("### Model specific settings")
with gr.Row():
models = list(config.model_configs.keys())
in_models = gr.Dropdown(choices=models, label="Model")
with gr.Row():
with gr.Column(scale=1):
in_use_safetensors = gr.Radio(label="Use safe tensors:", choices=["True", "False"], interactive=False)
with gr.Column(scale=1):
in_safety_checker = gr.Radio(label="Enable safety checker:", value=config.current["safety_checker"], choices=[True, False])
in_requires_safety_checker = gr.Radio(label="Requires safety checker:", value=config.current["requires_safety_checker"], choices=[True, False])
gr.Markdown("### Scheduler")
with gr.Row():
schedulers = list(config.scheduler_configs.keys())
in_schedulers = gr.Dropdown(choices=schedulers, label="Scheduler", info="see https://huggingface.co/docs/diffusers/using-diffusers/loading#schedulers" )
out_scheduler_description = gr.Textbox(value="", label="Description")
gr.Markdown("### Adapters")
with gr.Row():
gr.Markdown('Choose an adapter.')
gr.Markdown("### Inference settings")
with gr.Row():
in_prompt = gr.TextArea(label="Prompt", value=config.current["prompt"])
in_negative_prompt = gr.TextArea(label="Negative prompt", value=config.current["negative_prompt"])
with gr.Row():
in_inference_steps = gr.Number(label="Inference steps", value=config.current["inference_steps"])
in_manual_seed = gr.Number(label="Manual seed", value=config.current["manual_seed"], info="Set this to -1 or leave it empty to randomly generate an image. A fixed value will result in a similar image for every run")
in_guidance_scale = gr.Slider(minimum=0, maximum=1, step=0.01, label="Guidance Scale", value=config.current["guidance_scale"], info="A low guidance scale leads to a faster inference time, with the drawback that negative prompts don’t have any effect on the denoising process.")
gr.Markdown("### Output")
with gr.Row():
btn_start_pipeline = gr.Button(value="Run inferencing")
with gr.Row():
# out_result = gr.Textbox(label="Status", value="")
out_image = gr.Image()
out_code = gr.Code(config.assemble_code(), label="Code")
with gr.Row():
out_current_config = gr.Code(value=str(config.current), label="Current config")
with gr.Row():
out_config_history = gr.Markdown(dict_list_to_markdown_table(config_history))
in_devices.change(device_change, inputs=[in_devices], outputs=[out_current_config, out_code])
in_data_type.change(data_type_change, inputs=[in_data_type], outputs=[out_current_config, out_code])
in_allow_tensorfloat32.change(tensorfloat32_change, inputs=[in_allow_tensorfloat32], outputs=[out_current_config, out_code])
in_variant.change(variant_change, inputs=[in_variant], outputs=[out_current_config, out_code])
in_models.change(models_change, inputs=[in_models, in_schedulers], outputs=[in_use_safetensors, in_schedulers, out_current_config, out_code])
in_safety_checker.change(safety_checker_change, inputs=[in_safety_checker], outputs=[out_current_config, out_code])
in_requires_safety_checker.change(requires_safety_checker_change, inputs=[in_requires_safety_checker], outputs=[out_current_config, out_code])
in_schedulers.change(schedulers_change, inputs=[in_schedulers], outputs=[out_scheduler_description, out_current_config, out_code])
in_inference_steps.change(inference_steps_change, inputs=[in_inference_steps], outputs=[out_current_config, out_code])
in_manual_seed.change(manual_seed_change, inputs=[in_manual_seed], outputs=[out_current_config, out_code])
in_guidance_scale.change(guidance_scale_change, inputs=[in_guidance_scale], outputs=[out_current_config, out_code])
in_prompt.change(prompt_change, inputs=[in_prompt], outputs=[out_current_config, out_code])
in_negative_prompt.change(negative_prompt_change, inputs=[in_negative_prompt], outputs=[out_current_config, out_code])
btn_start_pipeline.click(run_inference, inputs=[
in_models,
in_devices,
in_use_safetensors,
in_data_type,
in_variant,
in_safety_checker,
in_requires_safety_checker,
in_schedulers,
in_prompt,
in_negative_prompt,
in_inference_steps,
in_manual_seed,
in_guidance_scale
], outputs=[
out_image,
out_config_history])
demo.load(fn=config.init_config, inputs=out_current_config,
outputs=[
in_models,
in_devices,
in_use_safetensors,
in_data_type,
in_variant,
in_safety_checker,
in_requires_safety_checker,
in_schedulers,
in_prompt,
in_negative_prompt,
in_inference_steps,
in_manual_seed,
in_guidance_scale
])
demo.launch()