import gradio as gr import io import base64 from flask import Flask, render_template, request, send_file, jsonify import torch import json from PIL import Image from diffusers import DiffusionPipeline from diffusers import ( DDPMScheduler, DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, DPMSolverMultistepScheduler, ) import threading import requests from flask import Flask, render_template_string from gradio import Interface from diffusers import AutoencoderKL import pandas as pd import base64 from config import Config config = Config() def device_change(device): return config.set_config('device', device), config.assemble_code() def models_change(model, scheduler): use_safetensors = False # no model selected (because this is UI init run) if type(model) != list and model is not None: use_safetensors = str(config.model_configs[model]['use_safetensors']) # if no scheduler is selected, choose the default one for this model if scheduler == None: scheduler = config.model_configs[model]['scheduler'] safety_checker_change(config.current["safety_checker"]) requires_safety_checker_change(config.current["requires_safety_checker"]) return use_safetensors, scheduler, config.set_config('model', model), config.assemble_code() def data_type_change(data_type): return config.set_config('data_type', data_type), config.assemble_code() def get_data_type(str_data_type): if str_data_type == "bfloat16": return torch.bfloat16 # BFloat16 is not supported on MPS as of 01/2024 else: return torch.float16 # Half-precision weights, as of https://huggingface.co/docs/diffusers/main/en/optimization/fp16 will save GPU memory def tensorfloat32_change(allow_tensorfloat32): return config.set_config('allow_tensorfloat32', allow_tensorfloat32), config.assemble_code() def inference_steps_change(inference_steps): return config.set_config('inference_steps', inference_steps), config.assemble_code() def manual_seed_change(manual_seed): return config.set_config('manual_seed', manual_seed), config.assemble_code() def guidance_scale_change(guidance_scale): return config.set_config('guidance_scale', guidance_scale), config.assemble_code() def prompt_change(prompt): return config.set_config('prompt', prompt), config.assemble_code() def negative_prompt_change(negative_prompt): return config.set_config('negative_prompt', negative_prompt), config.assemble_code() def variant_change(variant): return config.set_config('variant', variant), config.assemble_code() def safety_checker_change(safety_checker): return config.set_config('safety_checker', safety_checker), config.assemble_code() def requires_safety_checker_change(requires_safety_checker): return config.set_config('requires_safety_checker', requires_safety_checker), config.assemble_code() def schedulers_change(scheduler): return config.get_scheduler_description(scheduler), config.set_config('scheduler', scheduler), config.assemble_code() def get_tensorfloat32(allow_tensorfloat32): return True if str(allow_tensorfloat32).lower() == 'true' else False def get_scheduler(scheduler, config): if scheduler == "DDPMScheduler": return DDPMScheduler.from_config(config) elif scheduler == "DDIMScheduler": return DDIMScheduler.from_config(config) elif scheduler == "PNDMScheduler": return PNDMScheduler.from_config(config) elif scheduler == "LMSDiscreteScheduler": return LMSDiscreteScheduler.from_config(config) elif scheduler == "EulerAncestralDiscreteScheduler": return EulerAncestralDiscreteScheduler.from_config(config) elif scheduler == "EulerDiscreteScheduler": return EulerDiscreteScheduler.from_config(config) elif scheduler == "DPMSolverMultistepScheduler": return DPMSolverMultistepScheduler.from_config(config) else: return DPMSolverMultistepScheduler.from_config(config) # get # - initial configuration, # - a list of available devices from the config file # - a list of available models from the config file # - a list of available schedulers from the config file # - a dict that contains code to for reproduction config.set_inital_config() # config.current, devices, model_configs, scheduler_configs, code = config.get_inital_config() # device = config.current["device"] # model = config.current["model"] # scheduler = config.current["scheduler"] # variant = config.current["variant"] # allow_tensorfloat32 = config.current["allow_tensorfloat32"] # use_safetensors = config.current["use_safetensors"] # data_type = config.current["data_type"] # safety_checker = config.current["safety_checker"] # requires_safety_checker = config.current["requires_safety_checker"] # manual_seed = config.current["manual_seed"] # inference_steps = config.current["inference_steps"] # guidance_scale = config.current["guidance_scale"] # prompt = config.current["prompt"] # negative_prompt = config.current["negative_prompt"] config_history = [] # pipeline def run_inference(model, device, use_safetensors, data_type, variant, safety_checker, requires_safety_checker, scheduler, prompt, negative_prompt, inference_steps, manual_seed, guidance_scale, progress=gr.Progress(track_tqdm=True)): if config.current["model"] != None and config.current["scheduler"] != None: progress((1,3), desc="Preparing pipeline initialization...") torch.backends.cuda.matmul.allow_tf32 = config.current["allow_tensorfloat32"] # Use TensorFloat-32 as of https://huggingface.co/docs/diffusers/main/en/optimization/fp16 faster, but slightly less accurate computations progress((2,3), desc="Initializing pipeline...") pipeline = DiffusionPipeline.from_pretrained( config.current["model"], use_safetensors=config.current["use_safetensors"], torch_dtype=get_data_type(config.current["data_type"]), variant=variant).to(config.current["device"]) if config.current["safety_checker"] is None or str(config.current["safety_checker"]).lower == 'false': pipeline.safety_checker = None pipeline.requires_safety_checker = config.current["requires_safety_checker"] pipeline.scheduler = get_scheduler(scheduler, pipeline.scheduler.config) manual_seed = int(manual_seed) if manual_seed < 0 or manual_seed is None or manual_seed == '': generator = torch.Generator(device) else: generator = torch.manual_seed(42) progress((3,3), desc="Creating the result...") image = pipeline( prompt=prompt, negative_prompt=negative_prompt, generator=generator, num_inference_steps=int(inference_steps), guidance_scale=float(guidance_scale)).images[0] config_history.append(config.current.copy()) return image, dict_list_to_markdown_table(config_history) else: return "Please select a model AND a scheduler.", None def dict_list_to_markdown_table(config_history): if not config_history: return "" headers = list(config_history[0].keys()) markdown_table = "| share | " + " | ".join(headers) + " |\n" markdown_table += "| --- | " + " | ".join(["---"] * len(headers)) + " |\n" for index, config in enumerate(config_history): encoded_config = base64.b64encode(str(config).encode()).decode() share_link = f'📎' markdown_table += f"| {share_link} | " + " | ".join(str(config.get(key, "")) for key in headers) + " |\n" markdown_table = '