File size: 13,262 Bytes
4e0e2d3 38b82b3 5d39f28 b96c8c5 4e0e2d3 b96c8c5 5d39f28 b96c8c5 5d39f28 c6a81f6 5d39f28 b96c8c5 c6a81f6 5d39f28 b96c8c5 5d39f28 b96c8c5 80c0bfe b96c8c5 c6a81f6 b96c8c5 5d39f28 c6a81f6 5d39f28 b96c8c5 a6a747f b96c8c5 5d39f28 b96c8c5 58f80cc b96c8c5 5d39f28 b96c8c5 3c02d45 b96c8c5 3c02d45 b96c8c5 3c02d45 b96c8c5 3c02d45 b96c8c5 3c02d45 b96c8c5 3c02d45 b96c8c5 3c02d45 b96c8c5 3c02d45 b96c8c5 5d39f28 b96c8c5 5d39f28 b96c8c5 5d39f28 b96c8c5 5d39f28 b96c8c5 5d39f28 b96c8c5 5d39f28 b96c8c5 5d39f28 b96c8c5 5d39f28 b96c8c5 5d39f28 b96c8c5 5d39f28 b96c8c5 58f80cc b96c8c5 5d39f28 b96c8c5 5d39f28 b96c8c5 5d39f28 b96c8c5 5d39f28 b96c8c5 5d39f28 c6a81f6 b96c8c5 5d39f28 b96c8c5 5d39f28 b96c8c5 2115a66 b96c8c5 5d39f28 b96c8c5 00e74d5 b96c8c5 c6a81f6 b96c8c5 d680fb0 c6a81f6 5d39f28 b96c8c5 2115a66 b96c8c5 2115a66 5d39f28 c1cbdbc b96c8c5 194a41e b96c8c5 194a41e c75a58b 80c0bfe c75a58b 5d39f28 b96c8c5 56914a9 b96c8c5 5d39f28 b96c8c5 5d39f28 2115a66 c6a81f6 5d39f28 b96c8c5 5d39f28 b96c8c5 2115a66 5d39f28 b96c8c5 5d39f28 b96c8c5 5d39f28 2115a66 b96c8c5 2115a66 b96c8c5 2115a66 b96c8c5 5d39f28 194a41e b96c8c5 c6a81f6 b96c8c5 80c0bfe 00e74d5 194a41e 80c0bfe c6a81f6 80c0bfe 5d39f28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import gradio as gr
import torch
from diffusers import DiffusionPipeline
from diffusers import AutoencoderKL
from config import *
from helpers import *
def device_change(device, config):
config = set_config(config, 'device', device)
return config, str(config), assemble_code(config)
def models_change(model, scheduler, config):
config = set_config(config, 'model', model)
use_safetensors = False
refiner = ""
# no model selected (because this is UI init run)
if type(model) != list and str(model) != 'None':
use_safetensors = str(models[model]['use_safetensors'])
model_description = models[model]['description']
refiner = models[model]['refiner']
# if no scheduler is selected, choose the default one for this model
if scheduler == None:
scheduler = models[model]['scheduler']
else:
model_description = 'Please select a model.'
config["use_safetensors"] = str(use_safetensors)
config["scheduler"] = str(scheduler)
config["refiner"] = str(refiner)
# safety_checker_change(in_safety_checker.value, config)
# requires_safety_checker_change(in_requires_safety_checker.value, config)
return model_description, refiner, use_safetensors, scheduler, config, str(config), assemble_code(config)
def data_type_change(data_type, config):
config = set_config(config, 'data_type', data_type)
return config, str(config), assemble_code(config)
def tensorfloat32_change(allow_tensorfloat32, config):
config = set_config(config, 'allow_tensorfloat32', allow_tensorfloat32)
return config, str(config), assemble_code(config)
def inference_steps_change(inference_steps, config):
config = set_config(config, 'inference_steps', inference_steps)
return config, str(config), assemble_code(config)
def manual_seed_change(manual_seed, config):
config = set_config(config, 'manual_seed', manual_seed)
return config, str(config), assemble_code(config)
def guidance_scale_change(guidance_scale, config):
config = set_config(config, 'guidance_scale', guidance_scale)
return config, str(config), assemble_code(config)
def prompt_change(prompt, config):
config = set_config(config, 'prompt', prompt)
return config, str(config), assemble_code(config)
def negative_prompt_change(negative_prompt, config):
config = set_config(config, 'negative_prompt', negative_prompt)
return config, str(config), assemble_code(config)
def variant_change(variant, config):
config = set_config(config, 'variant', variant)
return config, str(config), assemble_code(config)
def safety_checker_change(safety_checker, config):
config = set_config(config, 'safety_checker', safety_checker)
return config, str(config), assemble_code(config)
def requires_safety_checker_change(requires_safety_checker, config):
config = set_config(config, 'requires_safety_checker', requires_safety_checker)
return config, str(config), assemble_code(config)
def schedulers_change(scheduler, config):
if str(scheduler) != 'None' and type(scheduler) != list:
scheduler_description = schedulers[scheduler]
else:
scheduler_description = 'Please select a scheduler.'
config = set_config(config, 'scheduler', scheduler)
return scheduler_description, config, str(config), assemble_code(config)
def run_inference(config, config_history, progress=gr.Progress(track_tqdm=True)):
# str_config = str_config.replace("'", '"').replace('None', 'null').replace('False', 'false')
# config = json.loads(str_config)
if str(config["model"]) != 'None' and str(config["scheduler"]) != 'None':
progress((1,3), desc="Preparing pipeline initialization...")
torch.backends.cuda.matmul.allow_tf32 = get_bool(config["allow_tensorfloat32"]) # Use TensorFloat-32 as of https://huggingface.co/docs/diffusers/main/en/optimization/fp16 faster, but slightly less accurate computations
progress((2,3), desc="Initializing pipeline...")
pipeline = DiffusionPipeline.from_pretrained(
config["model"],
use_safetensors = get_bool(config["use_safetensors"]),
torch_dtype = get_data_type(config["data_type"]),
variant = get_variant(config["variant"])).to(config["device"])
if config['refiner'] != '':
refiner = DiffusionPipeline.from_pretrained(
config['refiner'],
text_encoder_2=pipeline.text_encoder_2,
vae=pipeline.vae,
torch_dtype=get_data_type(config["data_type"]),
use_safetensors=get_bool(config["use_safetensors"]),
variant = get_variant(config["variant"])).to(config["device"])
if str(config["safety_checker"]).lower() == 'false':
pipeline.safety_checker = None
pipeline.requires_safety_checker = get_bool(config["requires_safety_checker"])
pipeline.scheduler = get_scheduler(config["scheduler"], pipeline.scheduler.config)
if config["manual_seed"] < 0 or config["manual_seed"] is None or config["manual_seed"] == '':
generator = torch.Generator(config["device"])
else:
generator = torch.manual_seed(int(config["manual_seed"]))
progress((3,3), desc="Creating the result...")
image = pipeline(
prompt = config["prompt"],
negative_prompt = config["negative_prompt"],
generator = generator,
num_inference_steps = int(config["inference_steps"]),
guidance_scale = float(config["guidance_scale"])).images
if config['refiner'] != '':
image = refiner(
prompt = config["prompt"],
num_inference_steps = int(config["inference_steps"]),
image=image,
).images
config_history.append(config.copy())
return image[0], dict_list_to_markdown_table(config_history), config_history
else:
return "Please select a model AND a scheduler.", None, config_history
appConfig = load_app_config()
models = appConfig.get("models", {})
schedulers = appConfig.get("schedulers", {})
devices = appConfig.get("devices", [])
# interface
with gr.Blocks(analytics_enabled=False) as demo:
config = gr.State(value=get_initial_config())
config_history = gr.State(value=[])
gr.Markdown('''## Text-2-Image Playground
<small>by <a target="_blank" href="https://www.linkedin.com/in/nickyreinert/">Nicky Reinert</a> |
home base: https://huggingface.co/spaces/n42/pictero
</small>''')
gr.Markdown("### Device specific settings")
with gr.Row():
in_devices = gr.Dropdown(label="Device:", value=config.value["device"], choices=devices, filterable=True, multiselect=False, allow_custom_value=True)
in_data_type = gr.Radio(label="Data Type:", value=config.value["data_type"], choices=["bfloat16", "float16", "float32"], info="`bfloat16` is not supported on MPS devices right now; `float16` may also not be supported on all devices, Half-precision weights, will save GPU memory, see https://huggingface.co/docs/diffusers/main/en/optimization/fp16")
in_allow_tensorfloat32 = gr.Radio(label="Allow TensorFloat32:", value=config.value["allow_tensorfloat32"], choices=["True", "False"], info="is not supported on MPS devices right now; use TensorFloat-32 is faster, but results in slightly less accurate computations, see https://huggingface.co/docs/diffusers/main/en/optimization/fp16 ")
in_variant = gr.Radio(label="Variant:", value=config.value["variant"], choices=["fp16", None], info="Use half-precision weights will save GPU memory, not all models support that, see https://huggingface.co/docs/diffusers/main/en/optimization/fp16 ")
gr.Markdown("### Model specific settings")
with gr.Row():
in_models = gr.Dropdown(choices=list(models.keys()), label="Model")
out_model_description = gr.Textbox(value="", label="Description")
with gr.Row():
with gr.Column(scale=1):
in_use_safetensors = gr.Radio(label="Use safe tensors:", choices=["True", "False"], interactive=False)
in_model_refiner = gr.Textbox(value="", label="Refiner")
with gr.Column(scale=1):
in_safety_checker = gr.Radio(label="Enable safety checker:", value=config.value["safety_checker"], choices=["True", "False"])
in_requires_safety_checker = gr.Radio(label="Requires safety checker:", value=config.value["requires_safety_checker"], choices=["True", "False"])
gr.Markdown("### Scheduler")
with gr.Row():
in_schedulers = gr.Dropdown(choices=list(schedulers.keys()), label="Scheduler", info="see https://huggingface.co/docs/diffusers/using-diffusers/loading#schedulers" )
out_scheduler_description = gr.Textbox(value="", label="Description")
gr.Markdown("### Adapters")
with gr.Row():
gr.Markdown('Choose an adapter.')
gr.Markdown("### Inference settings")
with gr.Row():
in_prompt = gr.TextArea(label="Prompt", value=config.value["prompt"])
in_negative_prompt = gr.TextArea(label="Negative prompt", value=config.value["negative_prompt"])
with gr.Row():
in_inference_steps = gr.Number(label="Inference steps", value=config.value["inference_steps"])
in_manual_seed = gr.Number(label="Manual seed", value=config.value["manual_seed"], info="Set this to -1 or leave it empty to randomly generate an image. A fixed value will result in a similar image for every run")
in_guidance_scale = gr.Slider(minimum=0, maximum=1, step=0.01, label="Guidance Scale", value=config.value["guidance_scale"], info="A low guidance scale leads to a faster inference time, with the drawback that negative prompts don’t have any effect on the denoising process.")
gr.Markdown("### Output")
with gr.Row():
btn_start_pipeline = gr.Button(value="Run inferencing")
with gr.Row():
# out_result = gr.Textbox(label="Status", value="")
out_image = gr.Image()
out_code = gr.Code(assemble_code(config.value), label="Code")
with gr.Row():
out_config = gr.Code(value=str(config.value), label="Current config")
with gr.Row():
out_config_history = gr.Markdown(dict_list_to_markdown_table(config_history.value))
in_devices.change(fn=device_change, inputs=[in_devices, config], outputs=[config, out_config, out_code])
in_data_type.change(data_type_change, inputs=[in_data_type, config], outputs=[config, out_config, out_code])
in_allow_tensorfloat32.change(tensorfloat32_change, inputs=[in_allow_tensorfloat32, config], outputs=[config, out_config, out_code])
in_variant.change(variant_change, inputs=[in_variant, config], outputs=[config, out_config, out_code])
in_models.change(models_change, inputs=[in_models, in_schedulers, config], outputs=[out_model_description, in_model_refiner, in_use_safetensors, in_schedulers, config, out_config, out_code])
in_safety_checker.change(safety_checker_change, inputs=[in_safety_checker, config], outputs=[config, out_config, out_code])
in_requires_safety_checker.change(requires_safety_checker_change, inputs=[in_requires_safety_checker, config], outputs=[config, out_config, out_code])
in_schedulers.change(schedulers_change, inputs=[in_schedulers, config], outputs=[out_scheduler_description, config, out_config, out_code])
in_inference_steps.change(inference_steps_change, inputs=[in_inference_steps, config], outputs=[config, out_config, out_code])
in_manual_seed.change(manual_seed_change, inputs=[in_manual_seed, config], outputs=[config, out_config, out_code])
in_guidance_scale.change(guidance_scale_change, inputs=[in_guidance_scale, config], outputs=[config, out_config, out_code])
in_prompt.change(prompt_change, inputs=[in_prompt, config], outputs=[config, out_config, out_code])
in_negative_prompt.change(negative_prompt_change, inputs=[in_negative_prompt, config], outputs=[config, out_config, out_code])
btn_start_pipeline.click(run_inference, inputs=[config, config_history], outputs=[out_image, out_config_history, config_history])
# send current respect initial config to init_config to populate parameters to all relevant input fields
# if GET parameter is set, it will overwrite initial config parameters
demo.load(fn=get_config_from_url,
inputs=[config],
outputs=[
in_models,
in_devices,
in_use_safetensors,
in_data_type,
in_model_refiner,
in_variant,
in_safety_checker,
in_requires_safety_checker,
in_schedulers,
in_prompt,
in_negative_prompt,
in_inference_steps,
in_manual_seed,
in_guidance_scale
])
demo.launch() |