myxlmynx's picture
local inference enhancements
bad3a67
raw
history blame
5.76 kB
import gradio as gr
import numpy as np
import random
import os
from pathlib import Path
# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline, StableDiffusionPipeline, schedulers
import torch
MODEL_REPO_ID = os.environ.get('MODEL_REPO_ID', 'myxlmynx/cyberrealistic_classic40')
MODEL_REPO_LOCAL = os.environ.get('MODEL_REPO_LOCAL', '')
MODEL_REPO_NAME = os.environ.get('MODEL_REPO_NAME', 'CyberRealistic Classic 4.0')
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Running on " + device)
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
print("Loading " + MODEL_REPO_ID)
if MODEL_REPO_LOCAL and Path(MODEL_REPO_LOCAL).is_file():
pipe = StableDiffusionPipeline.from_single_file(MODEL_REPO_LOCAL, torch_dtype=torch_dtype)
else:
pipe = DiffusionPipeline.from_pretrained(MODEL_REPO_ID, torch_dtype=torch_dtype)
extra_inference_parameters = {}
# add accel LoRA to boost generation speed
pipe.load_lora_weights("wangfuyun/PCM_Weights",
subfolder='sd15', weight_name='pcm_sd15_smallcfg_2step_converted.safetensors',
adapter_name='pcm_smallcfg_2step')
pipe.set_adapters(['pcm_smallcfg_2step'], adapter_weights=[1.0])
pipe.fuse_lora()
# for very low step counts with PCM
#pipe.scheduler = schedulers.DDIMScheduler(timestep_spacing='trailing',
# clip_sample=False, set_alpha_to_one=False)
pipe.scheduler = schedulers.TCDScheduler()
extra_inference_parameters['eta'] = 0.3
#pipe.scheduler = schedulers.LCMScheduler()
#pipe.scheduler = schedulers.EulerAncestralDiscreteScheduler()
# lib default will fry the image
default_guidance_scale = 1
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MIN_IMAGE_SIZE = 128
MAX_IMAGE_SIZE = 1024
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
if guidance_scale == 0:
guidance_scale = default_guidance_scale
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
**extra_inference_parameters
).images[0]
return image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo_device:
with gr.Column(elem_id="col-container"):
gr.Markdown("# " + MODEL_REPO_NAME + " - on " + device.upper())
if device == 'cpu':
gr.Markdown("Note: running on CPU, generation will be very slow. Expect at least" +
" a minute for minimal parameters (512x512 image, guidance <= 1, <=4 steps).\n" +
"It's also on a single queue, so clone this space for experimenting with it.")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=3,
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
demo_inference = gr.load(MODEL_REPO_ID, title=MODEL_REPO_NAME, src='models')
demo = gr.TabbedInterface([demo_inference, demo_device], ["Inference API", device.upper()])
if __name__ == "__main__":
demo.launch()