|
import gradio as gr |
|
import numpy as np |
|
import random |
|
import os |
|
from pathlib import Path |
|
|
|
|
|
from diffusers import DiffusionPipeline, StableDiffusionPipeline, schedulers |
|
import torch |
|
|
|
MODEL_REPO_ID = os.environ.get('MODEL_REPO_ID', 'myxlmynx/cyberrealistic_classic40') |
|
MODEL_REPO_LOCAL = os.environ.get('MODEL_REPO_LOCAL', '') |
|
MODEL_REPO_NAME = os.environ.get('MODEL_REPO_NAME', 'CyberRealistic Classic 4.0') |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
print("Running on " + device) |
|
|
|
if torch.cuda.is_available(): |
|
torch_dtype = torch.float16 |
|
else: |
|
torch_dtype = torch.float32 |
|
|
|
print("Loading " + MODEL_REPO_ID) |
|
if MODEL_REPO_LOCAL and Path(MODEL_REPO_LOCAL).is_file(): |
|
pipe = StableDiffusionPipeline.from_single_file(MODEL_REPO_LOCAL, torch_dtype=torch_dtype) |
|
else: |
|
pipe = DiffusionPipeline.from_pretrained(MODEL_REPO_ID, torch_dtype=torch_dtype) |
|
|
|
extra_inference_parameters = {} |
|
|
|
|
|
pipe.load_lora_weights("wangfuyun/PCM_Weights", |
|
subfolder='sd15', weight_name='pcm_sd15_smallcfg_2step_converted.safetensors', |
|
adapter_name='pcm_smallcfg_2step') |
|
pipe.set_adapters(['pcm_smallcfg_2step'], adapter_weights=[1.0]) |
|
pipe.fuse_lora() |
|
|
|
|
|
|
|
|
|
pipe.scheduler = schedulers.TCDScheduler() |
|
extra_inference_parameters['eta'] = 0.3 |
|
|
|
|
|
|
|
|
|
default_guidance_scale = 1 |
|
|
|
pipe = pipe.to(device) |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MIN_IMAGE_SIZE = 128 |
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
|
|
def infer( |
|
prompt, |
|
negative_prompt, |
|
seed, |
|
randomize_seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_inference_steps, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
if guidance_scale == 0: |
|
guidance_scale = default_guidance_scale |
|
|
|
image = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
**extra_inference_parameters |
|
).images[0] |
|
|
|
return image, seed |
|
|
|
|
|
examples = [ |
|
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", |
|
"An astronaut riding a green horse", |
|
"A delicious ceviche cheesecake slice", |
|
] |
|
|
|
css = """ |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 640px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo_device: |
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown("# " + MODEL_REPO_NAME + " - on " + device.upper()) |
|
|
|
if device == 'cpu': |
|
gr.Markdown("Note: running on CPU, generation will be very slow. Expect at least" + |
|
" a minute for minimal parameters (512x512 image, guidance <= 1, <=4 steps).\n" + |
|
"It's also on a single queue, so clone this space for experimenting with it.") |
|
|
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
|
|
run_button = gr.Button("Run", scale=0, variant="primary") |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
placeholder="Enter a negative prompt", |
|
visible=False, |
|
) |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=MIN_IMAGE_SIZE, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=512, |
|
) |
|
|
|
height = gr.Slider( |
|
label="Height", |
|
minimum=MIN_IMAGE_SIZE, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=768, |
|
) |
|
|
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.0, |
|
maximum=10.0, |
|
step=0.1, |
|
value=0.0, |
|
) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=3, |
|
) |
|
|
|
gr.Examples(examples=examples, inputs=[prompt]) |
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn=infer, |
|
inputs=[ |
|
prompt, |
|
negative_prompt, |
|
seed, |
|
randomize_seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
num_inference_steps, |
|
], |
|
outputs=[result, seed], |
|
) |
|
|
|
|
|
demo_inference = gr.load(MODEL_REPO_ID, title=MODEL_REPO_NAME, src='models') |
|
|
|
demo = gr.TabbedInterface([demo_inference, demo_device], ["Inference API", device.upper()]) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|