File size: 5,763 Bytes
0a15be9
 
 
bad3a67
 
0a15be9
 
bad3a67
0a15be9
 
bad3a67
 
 
 
0a15be9
bad3a67
0a15be9
 
 
 
 
 
bad3a67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a15be9
 
 
bad3a67
0a15be9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bad3a67
 
 
0a15be9
 
 
 
 
 
 
 
bad3a67
0a15be9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bad3a67
0a15be9
bad3a67
 
 
 
 
 
0a15be9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bad3a67
0a15be9
 
bad3a67
0a15be9
 
 
 
bad3a67
0a15be9
 
bad3a67
0a15be9
 
 
 
 
 
 
 
bad3a67
0a15be9
 
 
 
 
 
 
bad3a67
0a15be9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b5cd2e
bad3a67
2b5cd2e
bad3a67
2b5cd2e
0a15be9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import gradio as gr
import numpy as np
import random
import os
from pathlib import Path

# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline, StableDiffusionPipeline, schedulers
import torch

MODEL_REPO_ID = os.environ.get('MODEL_REPO_ID', 'myxlmynx/cyberrealistic_classic40')
MODEL_REPO_LOCAL = os.environ.get('MODEL_REPO_LOCAL', '')
MODEL_REPO_NAME = os.environ.get('MODEL_REPO_NAME', 'CyberRealistic Classic 4.0')

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Running on " + device)

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

print("Loading " + MODEL_REPO_ID)
if MODEL_REPO_LOCAL and Path(MODEL_REPO_LOCAL).is_file():
    pipe = StableDiffusionPipeline.from_single_file(MODEL_REPO_LOCAL, torch_dtype=torch_dtype)
else:
    pipe = DiffusionPipeline.from_pretrained(MODEL_REPO_ID, torch_dtype=torch_dtype)

extra_inference_parameters = {}

# add accel LoRA to boost generation speed
pipe.load_lora_weights("wangfuyun/PCM_Weights",
    subfolder='sd15', weight_name='pcm_sd15_smallcfg_2step_converted.safetensors',
    adapter_name='pcm_smallcfg_2step')
pipe.set_adapters(['pcm_smallcfg_2step'], adapter_weights=[1.0])
pipe.fuse_lora()

# for very low step counts with PCM
#pipe.scheduler = schedulers.DDIMScheduler(timestep_spacing='trailing',
#  clip_sample=False, set_alpha_to_one=False)
pipe.scheduler = schedulers.TCDScheduler()
extra_inference_parameters['eta'] = 0.3
#pipe.scheduler = schedulers.LCMScheduler()
#pipe.scheduler = schedulers.EulerAncestralDiscreteScheduler()

# lib default will fry the image
default_guidance_scale = 1

pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MIN_IMAGE_SIZE = 128
MAX_IMAGE_SIZE = 1024

# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    if guidance_scale == 0:
        guidance_scale = default_guidance_scale

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
        **extra_inference_parameters
    ).images[0]

    return image, seed


examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo_device:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# " + MODEL_REPO_NAME + " - on " + device.upper())

        if device == 'cpu':
            gr.Markdown("Note: running on CPU, generation will be very slow. Expect at least" +
              " a minute for minimal parameters (512x512 image, guidance <= 1, <=4 steps).\n" +
              "It's also on a single queue, so clone this space for experimenting with it.")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=MIN_IMAGE_SIZE,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=MIN_IMAGE_SIZE,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=768,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=0.0,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=3,
                )

        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )


demo_inference = gr.load(MODEL_REPO_ID, title=MODEL_REPO_NAME, src='models')

demo = gr.TabbedInterface([demo_inference, demo_device], ["Inference API", device.upper()])

if __name__ == "__main__":
    demo.launch()