File size: 5,763 Bytes
0a15be9 bad3a67 0a15be9 bad3a67 0a15be9 bad3a67 0a15be9 bad3a67 0a15be9 bad3a67 0a15be9 bad3a67 0a15be9 bad3a67 0a15be9 bad3a67 0a15be9 bad3a67 0a15be9 bad3a67 0a15be9 bad3a67 0a15be9 bad3a67 0a15be9 bad3a67 0a15be9 bad3a67 0a15be9 bad3a67 0a15be9 bad3a67 0a15be9 2b5cd2e bad3a67 2b5cd2e bad3a67 2b5cd2e 0a15be9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import gradio as gr
import numpy as np
import random
import os
from pathlib import Path
# import spaces #[uncomment to use ZeroGPU]
from diffusers import DiffusionPipeline, StableDiffusionPipeline, schedulers
import torch
MODEL_REPO_ID = os.environ.get('MODEL_REPO_ID', 'myxlmynx/cyberrealistic_classic40')
MODEL_REPO_LOCAL = os.environ.get('MODEL_REPO_LOCAL', '')
MODEL_REPO_NAME = os.environ.get('MODEL_REPO_NAME', 'CyberRealistic Classic 4.0')
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Running on " + device)
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
print("Loading " + MODEL_REPO_ID)
if MODEL_REPO_LOCAL and Path(MODEL_REPO_LOCAL).is_file():
pipe = StableDiffusionPipeline.from_single_file(MODEL_REPO_LOCAL, torch_dtype=torch_dtype)
else:
pipe = DiffusionPipeline.from_pretrained(MODEL_REPO_ID, torch_dtype=torch_dtype)
extra_inference_parameters = {}
# add accel LoRA to boost generation speed
pipe.load_lora_weights("wangfuyun/PCM_Weights",
subfolder='sd15', weight_name='pcm_sd15_smallcfg_2step_converted.safetensors',
adapter_name='pcm_smallcfg_2step')
pipe.set_adapters(['pcm_smallcfg_2step'], adapter_weights=[1.0])
pipe.fuse_lora()
# for very low step counts with PCM
#pipe.scheduler = schedulers.DDIMScheduler(timestep_spacing='trailing',
# clip_sample=False, set_alpha_to_one=False)
pipe.scheduler = schedulers.TCDScheduler()
extra_inference_parameters['eta'] = 0.3
#pipe.scheduler = schedulers.LCMScheduler()
#pipe.scheduler = schedulers.EulerAncestralDiscreteScheduler()
# lib default will fry the image
default_guidance_scale = 1
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MIN_IMAGE_SIZE = 128
MAX_IMAGE_SIZE = 1024
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
if guidance_scale == 0:
guidance_scale = default_guidance_scale
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
**extra_inference_parameters
).images[0]
return image, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo_device:
with gr.Column(elem_id="col-container"):
gr.Markdown("# " + MODEL_REPO_NAME + " - on " + device.upper())
if device == 'cpu':
gr.Markdown("Note: running on CPU, generation will be very slow. Expect at least" +
" a minute for minimal parameters (512x512 image, guidance <= 1, <=4 steps).\n" +
"It's also on a single queue, so clone this space for experimenting with it.")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=MIN_IMAGE_SIZE,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=3,
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
demo_inference = gr.load(MODEL_REPO_ID, title=MODEL_REPO_NAME, src='models')
demo = gr.TabbedInterface([demo_inference, demo_device], ["Inference API", device.upper()])
if __name__ == "__main__":
demo.launch()
|