Spaces:
Sleeping
Sleeping
import os | |
from knowledge_storm import STORMWikiRunnerArguments, STORMWikiRunner, STORMWikiLMConfigs | |
from knowledge_storm.lm import OpenAIModel | |
from knowledge_storm.rm import YouRM | |
import spaces | |
import gradio as gr | |
lm_configs = STORMWikiLMConfigs() | |
openai_kwargs = { | |
'api_key': os.getenv("OPENAI_API_KEY"), | |
'temperature': 1.0, | |
'top_p': 0.9, | |
} | |
# STORM is a LM system so different components can be powered by different models to reach a good balance between cost and quality. | |
# For a good practice, choose a cheaper/faster model for `conv_simulator_lm` which is used to split queries, synthesize answers in the conversation. | |
# Choose a more powerful model for `article_gen_lm` to generate verifiable text with citations. | |
gpt_35 = OpenAIModel(model='gpt-3.5-turbo', max_tokens=500, **openai_kwargs) | |
gpt_4 = OpenAIModel(model='gpt-4o', max_tokens=3000, **openai_kwargs) | |
lm_configs.set_conv_simulator_lm(gpt_4) | |
lm_configs.set_question_asker_lm(gpt_4) | |
lm_configs.set_outline_gen_lm(gpt_4) | |
lm_configs.set_article_gen_lm(gpt_4) | |
lm_configs.set_article_polish_lm(gpt_4) | |
# Check out the STORMWikiRunnerArguments class for more configurations. | |
engine_args = STORMWikiRunnerArguments("outputs") | |
rm = YouRM(ydc_api_key=os.getenv('YDC_API_KEY'), k=engine_args.search_top_k) | |
runner = STORMWikiRunner(engine_args, lm_configs, rm) | |
def generate_article(prompt, progress=gr.Progress(track_tqdm=True)): | |
runner.run( | |
topic=prompt, | |
do_research=True, | |
do_generate_outline=True, | |
do_generate_article=True, | |
do_polish_article=True, | |
) | |
runner.post_run() | |
runner.summary() | |
with gr.Blocks() as demo: | |
prompt = gr.Textbox(label="Prompt") | |
output = gr.Markdown(label="Output") | |
btn = gr.Button("Generate") | |
btn.click(fn=generate_article, inputs=prompt, outputs=output) | |
if __name__ == "__main__": | |
demo.launch() |