import os from knowledge_storm import STORMWikiRunnerArguments, STORMWikiRunner, STORMWikiLMConfigs from knowledge_storm.lm import OpenAIModel from knowledge_storm.rm import YouRM import spaces import gradio as gr lm_configs = STORMWikiLMConfigs() openai_kwargs = { 'api_key': os.getenv("OPENAI_API_KEY"), 'temperature': 1.0, 'top_p': 0.9, } # STORM is a LM system so different components can be powered by different models to reach a good balance between cost and quality. # For a good practice, choose a cheaper/faster model for `conv_simulator_lm` which is used to split queries, synthesize answers in the conversation. # Choose a more powerful model for `article_gen_lm` to generate verifiable text with citations. gpt_35 = OpenAIModel(model='gpt-3.5-turbo', max_tokens=500, **openai_kwargs) gpt_4 = OpenAIModel(model='gpt-4o', max_tokens=3000, **openai_kwargs) lm_configs.set_conv_simulator_lm(gpt_4) lm_configs.set_question_asker_lm(gpt_4) lm_configs.set_outline_gen_lm(gpt_4) lm_configs.set_article_gen_lm(gpt_4) lm_configs.set_article_polish_lm(gpt_4) # Check out the STORMWikiRunnerArguments class for more configurations. engine_args = STORMWikiRunnerArguments("outputs") rm = YouRM(ydc_api_key=os.getenv('YDC_API_KEY'), k=engine_args.search_top_k) runner = STORMWikiRunner(engine_args, lm_configs, rm) @spaces.GPU def generate_article(prompt, progress=gr.Progress(track_tqdm=True)): runner.run( topic=prompt, do_research=True, do_generate_outline=True, do_generate_article=True, do_polish_article=True, ) runner.post_run() runner.summary() with gr.Blocks() as demo: prompt = gr.Textbox(label="Prompt") output = gr.Markdown(label="Output") btn = gr.Button("Generate") btn.click(fn=generate_article, inputs=prompt, outputs=output) if __name__ == "__main__": demo.launch()