add live preview

#17
by multimodalart HF staff - opened
Files changed (2) hide show
  1. app.py +15 -7
  2. live_preview_helpers.py +165 -0
app.py CHANGED
@@ -5,19 +5,23 @@ import logging
5
  import torch
6
  from PIL import Image
7
  import spaces
8
- from diffusers import DiffusionPipeline
 
9
  from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
10
  import copy
11
  import random
12
  import time
13
 
 
 
14
  # Load LoRAs from JSON file
15
  with open('loras.json', 'r') as f:
16
  loras = json.load(f)
17
 
18
  # Initialize the base model
19
- base_model = "black-forest-labs/FLUX.1-dev"
20
- pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
 
21
 
22
  MAX_SEED = 2**32-1
23
 
@@ -60,19 +64,23 @@ def update_selection(evt: gr.SelectData, width, height):
60
  @spaces.GPU(duration=70)
61
  def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
62
  pipe.to("cuda")
 
 
63
  generator = torch.Generator(device="cuda").manual_seed(seed)
64
 
65
  with calculateDuration("Generating image"):
66
- # Generate image
67
- image = pipe(
68
  prompt=prompt_mash,
 
69
  num_inference_steps=steps,
70
- guidance_scale=cfg_scale,
71
  width=width,
72
  height=height,
 
73
  generator=generator,
 
74
  joint_attention_kwargs={"scale": lora_scale},
75
- ).images[0]
 
76
  return image
77
 
78
  def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
 
5
  import torch
6
  from PIL import Image
7
  import spaces
8
+ from diffusers import DiffusionPipeline, AutoencoderTiny
9
+ from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
10
  from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
11
  import copy
12
  import random
13
  import time
14
 
15
+ dtype = torch.bfloat16
16
+
17
  # Load LoRAs from JSON file
18
  with open('loras.json', 'r') as f:
19
  loras = json.load(f)
20
 
21
  # Initialize the base model
22
+ taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
23
+ pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
24
+ torch.cuda.empty_cache()
25
 
26
  MAX_SEED = 2**32-1
27
 
 
64
  @spaces.GPU(duration=70)
65
  def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
66
  pipe.to("cuda")
67
+ if randomize_seed:
68
+ seed = random.randint(0, MAX_SEED)
69
  generator = torch.Generator(device="cuda").manual_seed(seed)
70
 
71
  with calculateDuration("Generating image"):
72
+ for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
 
73
  prompt=prompt_mash,
74
+ guidance_scale=guidance_scale,
75
  num_inference_steps=steps,
 
76
  width=width,
77
  height=height,
78
+ guidance_scale=cfg_scale,
79
  generator=generator,
80
+ output_type="pil",
81
  joint_attention_kwargs={"scale": lora_scale},
82
+ ):
83
+ yield img, seed
84
  return image
85
 
86
  def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
live_preview_helpers.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ from diffusers import FluxPipeline, AutoencoderTiny, FlowMatchEulerDiscreteScheduler
4
+ from typing import Any, Dict, List, Optional, Union
5
+
6
+ # Helper functions
7
+ def calculate_shift(
8
+ image_seq_len,
9
+ base_seq_len: int = 256,
10
+ max_seq_len: int = 4096,
11
+ base_shift: float = 0.5,
12
+ max_shift: float = 1.16,
13
+ ):
14
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
15
+ b = base_shift - m * base_seq_len
16
+ mu = image_seq_len * m + b
17
+ return mu
18
+
19
+ def retrieve_timesteps(
20
+ scheduler,
21
+ num_inference_steps: Optional[int] = None,
22
+ device: Optional[Union[str, torch.device]] = None,
23
+ timesteps: Optional[List[int]] = None,
24
+ sigmas: Optional[List[float]] = None,
25
+ **kwargs,
26
+ ):
27
+ if timesteps is not None and sigmas is not None:
28
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
29
+ if timesteps is not None:
30
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
31
+ timesteps = scheduler.timesteps
32
+ num_inference_steps = len(timesteps)
33
+ elif sigmas is not None:
34
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
35
+ timesteps = scheduler.timesteps
36
+ num_inference_steps = len(timesteps)
37
+ else:
38
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
39
+ timesteps = scheduler.timesteps
40
+ return timesteps, num_inference_steps
41
+
42
+ # FLUX pipeline function
43
+ @torch.inference_mode()
44
+ def flux_pipe_call_that_returns_an_iterable_of_images(
45
+ self,
46
+ prompt: Union[str, List[str]] = None,
47
+ prompt_2: Optional[Union[str, List[str]]] = None,
48
+ height: Optional[int] = None,
49
+ width: Optional[int] = None,
50
+ num_inference_steps: int = 28,
51
+ timesteps: List[int] = None,
52
+ guidance_scale: float = 3.5,
53
+ num_images_per_prompt: Optional[int] = 1,
54
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
55
+ latents: Optional[torch.FloatTensor] = None,
56
+ prompt_embeds: Optional[torch.FloatTensor] = None,
57
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
58
+ output_type: Optional[str] = "pil",
59
+ return_dict: bool = True,
60
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
61
+ max_sequence_length: int = 512,
62
+ ):
63
+ height = height or self.default_sample_size * self.vae_scale_factor
64
+ width = width or self.default_sample_size * self.vae_scale_factor
65
+
66
+ # 1. Check inputs
67
+ self.check_inputs(
68
+ prompt,
69
+ prompt_2,
70
+ height,
71
+ width,
72
+ prompt_embeds=prompt_embeds,
73
+ pooled_prompt_embeds=pooled_prompt_embeds,
74
+ max_sequence_length=max_sequence_length,
75
+ )
76
+
77
+ self._guidance_scale = guidance_scale
78
+ self._joint_attention_kwargs = joint_attention_kwargs
79
+ self._interrupt = False
80
+
81
+ # 2. Define call parameters
82
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
83
+ device = self._execution_device
84
+
85
+ # 3. Encode prompt
86
+ lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
87
+ prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
88
+ prompt=prompt,
89
+ prompt_2=prompt_2,
90
+ prompt_embeds=prompt_embeds,
91
+ pooled_prompt_embeds=pooled_prompt_embeds,
92
+ device=device,
93
+ num_images_per_prompt=num_images_per_prompt,
94
+ max_sequence_length=max_sequence_length,
95
+ lora_scale=lora_scale,
96
+ )
97
+ # 4. Prepare latent variables
98
+ num_channels_latents = self.transformer.config.in_channels // 4
99
+ latents, latent_image_ids = self.prepare_latents(
100
+ batch_size * num_images_per_prompt,
101
+ num_channels_latents,
102
+ height,
103
+ width,
104
+ prompt_embeds.dtype,
105
+ device,
106
+ generator,
107
+ latents,
108
+ )
109
+ # 5. Prepare timesteps
110
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
111
+ image_seq_len = latents.shape[1]
112
+ mu = calculate_shift(
113
+ image_seq_len,
114
+ self.scheduler.config.base_image_seq_len,
115
+ self.scheduler.config.max_image_seq_len,
116
+ self.scheduler.config.base_shift,
117
+ self.scheduler.config.max_shift,
118
+ )
119
+ timesteps, num_inference_steps = retrieve_timesteps(
120
+ self.scheduler,
121
+ num_inference_steps,
122
+ device,
123
+ timesteps,
124
+ sigmas,
125
+ mu=mu,
126
+ )
127
+ self._num_timesteps = len(timesteps)
128
+
129
+ # Handle guidance
130
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
131
+
132
+ # 6. Denoising loop
133
+ for i, t in enumerate(timesteps):
134
+ if self.interrupt:
135
+ continue
136
+
137
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
138
+
139
+ noise_pred = self.transformer(
140
+ hidden_states=latents,
141
+ timestep=timestep / 1000,
142
+ guidance=guidance,
143
+ pooled_projections=pooled_prompt_embeds,
144
+ encoder_hidden_states=prompt_embeds,
145
+ txt_ids=text_ids,
146
+ img_ids=latent_image_ids,
147
+ joint_attention_kwargs=self.joint_attention_kwargs,
148
+ return_dict=False,
149
+ )[0]
150
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
151
+
152
+ # Yield intermediate result
153
+ latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
154
+ latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
155
+ image = self.vae.decode(latents_for_image, return_dict=False)[0]
156
+ yield self.image_processor.postprocess(image, output_type=output_type)[0]
157
+ torch.cuda.empty_cache()
158
+
159
+ # Final image
160
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
161
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
162
+ image = self.vae.decode(latents, return_dict=False)[0]
163
+ self.maybe_free_model_hooks()
164
+ torch.cuda.empty_cache()
165
+ return self.image_processor.postprocess(image, output_type=output_type)[0], 0