Spaces:
Running
Running
File size: 2,321 Bytes
74885f3 306eb78 74885f3 306eb78 74885f3 306eb78 74885f3 306eb78 74885f3 306eb78 74885f3 306eb78 74885f3 306eb78 74885f3 306eb78 74885f3 306eb78 74885f3 306eb78 74885f3 306eb78 74885f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
import whisper
# Initialize tokenizer and model for spell checking
tokenizer = AutoTokenizer.from_pretrained("Bhuvana/t5-base-spellchecker")
model = AutoModelForSeq2SeqLM.from_pretrained("Bhuvana/t5-base-spellchecker")
# Function to correct spelling errors in a given input text
def correct(inputs):
'''Corrects spelling errors in the input text using the spell checker model.
Args:
inputs (str): The input text to be spell-checked.
Returns:
str: The corrected version of the input text.
'''
# Encode the input text using the tokenizer
input_ids = tokenizer.encode(inputs, return_tensors='pt')
# Generate corrected output using the spell checker model
sample_output = model.generate(
input_ids,
do_sample=True,
max_length=50,
top_p=0.99,
num_return_sequences=1
)
# Decode the corrected output and remove special tokens
res = tokenizer.decode(sample_output[0], skip_special_tokens=True)
return res
# Load the whisper model for audio transcription
whisper_model = whisper.load_model("base")
# Function to transcribe audio file
def transcribe(audio_file):
'''Transcribes the content of an audio file.
Args:
audio_file (str): The path to the audio file.
Returns:
str: The transcribed text from the audio file, with spelling errors corrected.
'''
# Load audio and pad/trim it to fit 30 seconds
audio = whisper.load_audio(audio_file)
audio = whisper.pad_or_trim(audio)
# Convert audio data to PyTorch tensor and float data type
mel = torch.from_numpy(audio).float()
# Make log-Mel spectrogram and move to the same device as the model
mel = whisper.log_mel_spectrogram(mel).to(model.device)
# Detect the spoken language using the whisper model
_, probs = whisper_model.detect_language(mel)
# Decode the audio using the whisper model
options = whisper.DecodingOptions(fp16=False)
result = whisper.decode(whisper_model, mel, options)
result_text = result.text
# Print the transcribed text
print('result_text:' + result_text)
# Correct any spelling errors in the transcribed text
return correct(result_text)
|