Spaces:
Running
Running
first commit
Browse files- app.py +66 -0
- audio.wav +0 -0
- credentials.json +1 -0
- quiz_generation.py +227 -0
- requirements.txt +0 -0
- transcription.py +53 -0
app.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from audiorecorder import audiorecorder
|
4 |
+
from apiclient import discovery
|
5 |
+
from httplib2 import Http
|
6 |
+
from oauth2client import client, file, tools
|
7 |
+
|
8 |
+
|
9 |
+
import warnings
|
10 |
+
|
11 |
+
from transcription import transcribe
|
12 |
+
from quiz_generation import generate_quiz_url, explain_quiz_answers
|
13 |
+
|
14 |
+
SCOPES = "https://www.googleapis.com/auth/forms.body"
|
15 |
+
|
16 |
+
|
17 |
+
def main():
|
18 |
+
warnings.filterwarnings("ignore")
|
19 |
+
|
20 |
+
# Initialize Google Sheets and Forms API services
|
21 |
+
store = file.Storage("credentials.json")
|
22 |
+
creds = store.get()
|
23 |
+
if not creds or creds.invalid:
|
24 |
+
flow = client.flow_from_clientsecrets(
|
25 |
+
r"C:\Users\Admin\Downloads\client_secret_535279977482-ttq1qb18v1crma5bkf70015qk9e9r2vv.apps.googleusercontent.com.json",
|
26 |
+
SCOPES
|
27 |
+
)
|
28 |
+
creds = tools.run_flow(flow, store)
|
29 |
+
form_service = discovery.build("forms", "v1", http=creds.authorize(Http()))
|
30 |
+
|
31 |
+
st.title("Quiz Generator")
|
32 |
+
st.markdown("Record an audio clip and generate a quiz based on the transcribed text.")
|
33 |
+
audio = audiorecorder("Click to record", "Stop recording")
|
34 |
+
|
35 |
+
if len(audio) > 0:
|
36 |
+
# To play audio in the frontend:
|
37 |
+
st.audio(audio.tobytes(), format="audio/wav")
|
38 |
+
|
39 |
+
# To save audio to a file:
|
40 |
+
wav_file = open("audio.wav", "wb")
|
41 |
+
wav_file.write(audio.tobytes())
|
42 |
+
|
43 |
+
# Quiz generation section
|
44 |
+
st.header("Quiz Generation")
|
45 |
+
|
46 |
+
if st.button("Generate Quiz"):
|
47 |
+
with st.spinner("Transcribing audio to generate the quiz..."):
|
48 |
+
#transcribed_text = transcribe("audio.wav")
|
49 |
+
transcribed_text = " can you please generate a quiz of 4 questions about ML, each of them with 4 answers and indicate the correct answer"
|
50 |
+
# Get the explanations for the quiz
|
51 |
+
|
52 |
+
|
53 |
+
quiz_url, explanations = generate_quiz_url(transcribed_text, form_service)
|
54 |
+
st.success("Quiz generated successfully!")
|
55 |
+
st.text("Quiz Link: " + quiz_url)
|
56 |
+
st.text("Transcribed Text:\n" + transcribed_text)
|
57 |
+
|
58 |
+
# Display the explanations
|
59 |
+
st.header("Quiz Explanations")
|
60 |
+
for i, explanation in enumerate(explanations):
|
61 |
+
st.subheader(f"Question {i+1}")
|
62 |
+
st.text(explanation)
|
63 |
+
|
64 |
+
|
65 |
+
if __name__ == '__main__':
|
66 |
+
main()
|
audio.wav
ADDED
Binary file (20.3 kB). View file
|
|
credentials.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"access_token": "ya29.a0AWY7Cknnaz0R8i2DlngKKKx4C_IZKzUVFPdZqk-e7diB_cGu1FcQDncMZArWOrjejGLUHakobPGddDruqRMC5Eu5ZKopv4BsKFPJi9mDLEwJBh8a7cYuIjMTZIQMkHQMtDm1Oz9T-QWjf26tLo_3iKKMOX7Gds8aCgYKARYSARESFQG1tDrpuJfmVxN7kf1ZQkwiDIKA5g0166", "client_id": "535279977482-ttq1qb18v1crma5bkf70015qk9e9r2vv.apps.googleusercontent.com", "client_secret": "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", "refresh_token": "1//03cifxY_-1uh0CgYIARAAGAMSNwF-L9IrA86QsxrDPYOR3JWrekwFt42ZYG5RCssKeYOv0YWqEwEr75FCT6S5hEloEG2wKomo91c", "token_expiry": "2023-05-27T18:43:18Z", "token_uri": "https://oauth2.googleapis.com/token", "user_agent": null, "revoke_uri": "https://oauth2.googleapis.com/revoke", "id_token": null, "id_token_jwt": null, "token_response": {"access_token": "ya29.a0AWY7Cknnaz0R8i2DlngKKKx4C_IZKzUVFPdZqk-e7diB_cGu1FcQDncMZArWOrjejGLUHakobPGddDruqRMC5Eu5ZKopv4BsKFPJi9mDLEwJBh8a7cYuIjMTZIQMkHQMtDm1Oz9T-QWjf26tLo_3iKKMOX7Gds8aCgYKARYSARESFQG1tDrpuJfmVxN7kf1ZQkwiDIKA5g0166", "expires_in": 3599, "scope": "https://www.googleapis.com/auth/forms.body", "token_type": "Bearer"}, "scopes": ["https://www.googleapis.com/auth/forms.body"], "token_info_uri": "https://oauth2.googleapis.com/tokeninfo", "invalid": false, "_class": "OAuth2Credentials", "_module": "oauth2client.client"}
|
quiz_generation.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import os
|
3 |
+
from apiclient import discovery
|
4 |
+
from oauth2client import client, file, tools
|
5 |
+
import bardapi
|
6 |
+
from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
|
7 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
8 |
+
|
9 |
+
SCOPES = "https://www.googleapis.com/auth/forms.body"
|
10 |
+
DISCOVERY_DOC = "https://forms.googleapis.com/$discovery/rest?version=v1"
|
11 |
+
|
12 |
+
NEW_FORM = {
|
13 |
+
"info": {
|
14 |
+
"title": "Quiz"
|
15 |
+
}
|
16 |
+
}
|
17 |
+
|
18 |
+
model_name = "t5-base"
|
19 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
20 |
+
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
21 |
+
|
22 |
+
def generate_quiz_questions(prompt):
|
23 |
+
# Set your Bard API key as an environment variable
|
24 |
+
os.environ['_BARD_API_KEY'] = "WwgqSrcbBC71HsiWpTlqnbDC9TQ3-9N1YyY6CHxOEfFp_qeCe0laziZoOT_dkTEjhJmOcw."
|
25 |
+
|
26 |
+
prompt_suffix = ". Each generated question has to begin with '🔹', each choice has to begin with '🔸', and each correct answer has to begin with '✔️'."
|
27 |
+
|
28 |
+
|
29 |
+
# Send API requests and get responses
|
30 |
+
response = bardapi.core.Bard().get_answer(prompt + prompt_suffix)
|
31 |
+
|
32 |
+
quiz = response["content"]
|
33 |
+
|
34 |
+
return quiz
|
35 |
+
|
36 |
+
'''
|
37 |
+
def generate_quiz_url(prompt_text, form_service):
|
38 |
+
# Generate quiz questions based on the transcribed text
|
39 |
+
text = generate_quiz_questions(prompt_text)
|
40 |
+
|
41 |
+
# Questions, choices, and correct answers
|
42 |
+
questions = re.findall(r"🔹 (.*?)\n", text)
|
43 |
+
choices = re.findall(r"🔸 (.*?)\n", text)
|
44 |
+
answers = re.findall(r"✔️ (.*?)\n", text)
|
45 |
+
|
46 |
+
# Remove the '**' from the questions list (they are not part of the question), choices, and correct answers
|
47 |
+
questions = [question.replace('**', '') for question in questions]
|
48 |
+
answers = [answer.replace('**', '') for answer in answers]
|
49 |
+
|
50 |
+
questions_list = []
|
51 |
+
|
52 |
+
# Fill the questions_list variable
|
53 |
+
for i, question in enumerate(questions):
|
54 |
+
choices_for_question = choices[i * 4:(i + 1) * 4]
|
55 |
+
correct_answer = answers[i] if i < len(answers) else ""
|
56 |
+
|
57 |
+
question_dict = {
|
58 |
+
"question": question,
|
59 |
+
"choices": choices_for_question,
|
60 |
+
"correct_answer": correct_answer
|
61 |
+
}
|
62 |
+
|
63 |
+
questions_list.append(question_dict)
|
64 |
+
|
65 |
+
# Create the initial form
|
66 |
+
result = form_service.forms().create(body=NEW_FORM).execute()
|
67 |
+
|
68 |
+
# Add the questions to the form
|
69 |
+
question_requests = []
|
70 |
+
for index, question in enumerate(questions_list):
|
71 |
+
new_question = {
|
72 |
+
"createItem": {
|
73 |
+
"item": {
|
74 |
+
"title": question["question"],
|
75 |
+
"questionItem": {
|
76 |
+
"question": {
|
77 |
+
"required": True,
|
78 |
+
"choiceQuestion": {
|
79 |
+
"type": "RADIO",
|
80 |
+
"options": [
|
81 |
+
{"value": choice} for choice in question["choices"]
|
82 |
+
],
|
83 |
+
"shuffle": True
|
84 |
+
}
|
85 |
+
}
|
86 |
+
}
|
87 |
+
},
|
88 |
+
"location": {
|
89 |
+
"index": index
|
90 |
+
}
|
91 |
+
}
|
92 |
+
}
|
93 |
+
question_requests.append(new_question)
|
94 |
+
|
95 |
+
NEW_QUESTIONS = {
|
96 |
+
"requests": question_requests
|
97 |
+
}
|
98 |
+
|
99 |
+
question_setting = form_service.forms().batchUpdate(formId=result["formId"], body=NEW_QUESTIONS).execute()
|
100 |
+
|
101 |
+
# Retrieve the updated form result
|
102 |
+
get_result = form_service.forms().get(formId=result["formId"]).execute()
|
103 |
+
|
104 |
+
# Get the form ID
|
105 |
+
form_id = get_result["formId"]
|
106 |
+
|
107 |
+
# Construct the quiz link using the form ID
|
108 |
+
form_url = result["responderUri"]
|
109 |
+
|
110 |
+
return form_url
|
111 |
+
'''
|
112 |
+
|
113 |
+
def explain_quiz_answers(questions_list):
|
114 |
+
explanations = []
|
115 |
+
|
116 |
+
for question in questions_list:
|
117 |
+
context = question["question"]
|
118 |
+
choices = question["choices"]
|
119 |
+
correct_answer = question["correct_answer"]
|
120 |
+
|
121 |
+
explanation = f"Question: {context}\n"
|
122 |
+
|
123 |
+
for choice in choices:
|
124 |
+
# Construct a query with each choice as a question
|
125 |
+
query = f"What is the reason for choosing '{choice}' in {context}?"
|
126 |
+
|
127 |
+
# Tokenize the query and context
|
128 |
+
inputs = tokenizer.encode_plus(query, context, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
|
129 |
+
|
130 |
+
# Generate the explanation using the T5 model
|
131 |
+
outputs = model.generate(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_length=256)
|
132 |
+
|
133 |
+
# Decode the explanation
|
134 |
+
explanation_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
135 |
+
|
136 |
+
# Add the explanation to the overall explanation
|
137 |
+
explanation += f"\nChoice: {choice}\nExplanation: {explanation_text}"
|
138 |
+
|
139 |
+
# Add an indicator if the choice is the correct answer
|
140 |
+
if choice == correct_answer:
|
141 |
+
explanation += " (Correct Answer)"
|
142 |
+
|
143 |
+
explanation += "\n"
|
144 |
+
|
145 |
+
explanations.append(explanation)
|
146 |
+
|
147 |
+
return explanations
|
148 |
+
|
149 |
+
|
150 |
+
def generate_quiz_url(prompt_text, form_service):
|
151 |
+
# Generate quiz questions based on the transcribed text
|
152 |
+
text = generate_quiz_questions(prompt_text)
|
153 |
+
|
154 |
+
# Questions, choices, and correct answers
|
155 |
+
questions = re.findall(r"🔹 (.*?)\n", text)
|
156 |
+
choices = re.findall(r"🔸 (.*?)\n", text)
|
157 |
+
answers = re.findall(r"✔️ (.*?)\n", text)
|
158 |
+
|
159 |
+
# Remove the '**' from the questions list (they are not part of the question), choices, and correct answers
|
160 |
+
questions = [question.replace('**', '') for question in questions]
|
161 |
+
answers = [answer.replace('**', '') for answer in answers]
|
162 |
+
|
163 |
+
questions_list = []
|
164 |
+
|
165 |
+
# Fill the questions_list variable
|
166 |
+
for i, question in enumerate(questions):
|
167 |
+
choices_for_question = choices[i * 4:(i + 1) * 4]
|
168 |
+
correct_answer = answers[i] if i < len(answers) else ""
|
169 |
+
|
170 |
+
question_dict = {
|
171 |
+
"question": question,
|
172 |
+
"choices": choices_for_question,
|
173 |
+
"correct_answer": correct_answer
|
174 |
+
}
|
175 |
+
|
176 |
+
questions_list.append(question_dict)
|
177 |
+
|
178 |
+
# Create the initial form
|
179 |
+
result = form_service.forms().create(body=NEW_FORM).execute()
|
180 |
+
|
181 |
+
# Add the questions to the form
|
182 |
+
question_requests = []
|
183 |
+
for index, question in enumerate(questions_list):
|
184 |
+
new_question = {
|
185 |
+
"createItem": {
|
186 |
+
"item": {
|
187 |
+
"title": question["question"],
|
188 |
+
"questionItem": {
|
189 |
+
"question": {
|
190 |
+
"required": True,
|
191 |
+
"choiceQuestion": {
|
192 |
+
"type": "RADIO",
|
193 |
+
"options": [
|
194 |
+
{"value": choice} for choice in question["choices"]
|
195 |
+
],
|
196 |
+
"shuffle": True
|
197 |
+
}
|
198 |
+
}
|
199 |
+
}
|
200 |
+
},
|
201 |
+
"location": {
|
202 |
+
"index": index
|
203 |
+
}
|
204 |
+
}
|
205 |
+
}
|
206 |
+
question_requests.append(new_question)
|
207 |
+
|
208 |
+
NEW_QUESTIONS = {
|
209 |
+
"requests": question_requests
|
210 |
+
}
|
211 |
+
|
212 |
+
question_setting = form_service.forms().batchUpdate(formId=result["formId"], body=NEW_QUESTIONS).execute()
|
213 |
+
|
214 |
+
# Retrieve the updated form result
|
215 |
+
get_result = form_service.forms().get(formId=result["formId"]).execute()
|
216 |
+
|
217 |
+
# Get the form ID
|
218 |
+
form_id = get_result["formId"]
|
219 |
+
|
220 |
+
# Construct the quiz link using the form ID
|
221 |
+
form_url = result["responderUri"]
|
222 |
+
|
223 |
+
# Get the explanations for the quiz
|
224 |
+
explanations = explain_quiz_answers(questions_list)
|
225 |
+
|
226 |
+
return form_url, explanations
|
227 |
+
|
requirements.txt
ADDED
File without changes
|
transcription.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
2 |
+
import torch
|
3 |
+
import whisper
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("Bhuvana/t5-base-spellchecker")
|
8 |
+
|
9 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("Bhuvana/t5-base-spellchecker")
|
10 |
+
|
11 |
+
|
12 |
+
def correct(inputs):
|
13 |
+
input_ids = tokenizer.encode(inputs,return_tensors='pt')
|
14 |
+
sample_output = model.generate(
|
15 |
+
input_ids,
|
16 |
+
do_sample=True,
|
17 |
+
max_length=50,
|
18 |
+
top_p=0.99,
|
19 |
+
num_return_sequences=1
|
20 |
+
)
|
21 |
+
res = tokenizer.decode(sample_output[0], skip_special_tokens=True)
|
22 |
+
return res
|
23 |
+
|
24 |
+
whisper_model = whisper.load_model("base")
|
25 |
+
def transcribe(audio_file):
|
26 |
+
# Load audio and pad/trim it to fit 30 seconds
|
27 |
+
audio = whisper.load_audio(audio_file)
|
28 |
+
audio = whisper.pad_or_trim(audio)
|
29 |
+
|
30 |
+
# Convert audio data to PyTorch tensor and float data type
|
31 |
+
mel = torch.from_numpy(audio).float()
|
32 |
+
|
33 |
+
# Make log-Mel spectrogram and move to the same device as the model
|
34 |
+
mel = whisper.log_mel_spectrogram(mel).to(model.device)
|
35 |
+
|
36 |
+
# Detect the spoken language
|
37 |
+
_, probs = whisper_model.detect_language(mel)
|
38 |
+
|
39 |
+
# Decode the audio
|
40 |
+
options = whisper.DecodingOptions(fp16=False)
|
41 |
+
result = whisper.decode(whisper_model, mel, options)
|
42 |
+
result_text = result.text
|
43 |
+
|
44 |
+
print('result_text:'+result_text)
|
45 |
+
|
46 |
+
return correct(result_text)
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
|