Spaces:
Runtime error
Runtime error
File size: 1,927 Bytes
cbe4d4c c8e54ed 28ff844 c8e54ed 6bfef5d c8e54ed bbd3701 f10b2fa 6bfef5d c8e54ed b65fb2a 1ff03d5 c8e54ed 1ff03d5 8cf8567 2724e1c c8e54ed 33b1b5b ca7ae8f 33b1b5b ca7ae8f 41ca77f 33b1b5b fb856de 30dbd25 c8e54ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import evaluate
from evaluate.utils import launch_gradio_widget
import gradio as gr
from transformers import AutoModelForSequenceClassification, pipeline, RobertaForSequenceClassification, RobertaTokenizer, AutoTokenizer
import tempfile
tmp = tempfile.NamedTemporaryFile()
# Define the list of available models
available_models = {
"mskov/roberta-base-toxicity": "Roberta Finetuned Model"
}
# Create a Gradio interface with audio file and text inputs
def classify_toxicity(audio_file, text_input, selected_model):
# Transcribe the audio file using Whisper ASR
if audio_file != None:
whisper_module = evaluate.load("whisper")
transcription_results = whisper_module.compute(uploaded=audio_file)
# Extract the transcribed text
transcribed_text = transcription_results["transcription"]
else:
transcribed_text = text_input
# Load the selected toxicity classification model
toxicity_module = evaluate.load("toxicity", selected_model)
#toxicity_module = evaluate.load("toxicity", 'DaNLP/da-electra-hatespeech-detection', module_type="measurement")
toxicity_results = toxicity_module.compute(predictions=[transcribed_text])
toxicity_score = toxicity_results["toxicity"][0]
print(toxicity_score)
return toxicity_score, transcribed_text
# return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
with gr.Blocks() as iface:
with gr.Column():
aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File")
with gr.Row():
text = gr.Textbox(label="Enter Text", placeholder="Enter text here...")
submit_btn = gr.Button(label="Submit")
radio = gr.Radio(available_models, type="value", label="Select Model")
out_text = gr.Textbox()
submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, radio], outputs=out_text)
iface.launch() |