Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import os | |
import time | |
from os import path | |
from safetensors.torch import load_file | |
import huggingface_hub | |
from huggingface_hub import hf_hub_download | |
import os | |
cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
os.environ["TRANSFORMERS_CACHE"] = cache_path | |
os.environ["HF_HUB_CACHE"] = cache_path | |
os.environ["HF_HOME"] = cache_path | |
import spaces | |
import gradio as gr | |
import torch | |
from diffusers import FluxPipeline | |
torch.backends.cuda.matmul.allow_tf32 = True | |
class timer: | |
def __init__(self, method_name="timed process"): | |
self.method = method_name | |
def __enter__(self): | |
self.start = time.time() | |
print(f"{self.method} starts") | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
end = time.time() | |
print(f"{self.method} took {str(round(end - self.start, 2))}s") | |
if not path.exists(cache_path): | |
os.makedirs(cache_path, exist_ok=True) | |
def load_and_fuse_lora_weights(pipe, lora_models): | |
for repo, file_path, lora_scale in lora_models: | |
lora_weights_path = hf_hub_download(repo_id=repo, filename=file_path) | |
pipe.load_lora_weights(lora_weights_path) | |
pipe.fuse_lora(lora_scale=lora_scale) | |
# List of LoRA models and their corresponding scales | |
lora_models = [ | |
("mrcuddle/live2d-model-maker", "LIVE2D-FLUX.safetensors", 0.125) | |
] | |
pipe = FluxPipeline.from_pretrained("advokat/AnimePro-FLUX", torch_dtype=torch.bfloat16) | |
# Load and fuse LoRA weights | |
load_and_fuse_lora_weights(pipe, lora_models) | |
pipe.to(device="cuda", dtype=torch.bfloat16) | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown( | |
""" | |
<div style="text-align: center; max-width: 650px; margin: 0 auto;"> | |
<h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">Live2D Base Model Maker</h1> | |
<p style="font-size: 1rem; margin-bottom: 1.5rem;">The LoRA's *required* prompt is preloaded</p> | |
</div> | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
with gr.Group(): | |
prompt = gr.Textbox( | |
label="Your Image Description", | |
placeholder="Girl with Red Dragon Wings", | |
lines=3 | |
) | |
# Hidden textbox for the preset prompt | |
preset_prompt = gr.Textbox( | |
label="Preset Prompt", | |
value="live2d,guijiaoxiansheng,separate hand,separate feet,separate head,multiple views,white background,magic particles, multiple references,color pallete reference,simple background,upper body,front,from side", | |
visible=False | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Group(): | |
with gr.Row(): | |
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024) | |
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024) | |
with gr.Row(): | |
steps = gr.Slider(label="Inference Steps", minimum=5, maximum=25, step=1, value=8) | |
scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, step=1, value=3.5) | |
seed = gr.Number(label="Seed (for reproducibility)", value=-1, precision=0) | |
generate_btn = gr.Button("Generate Image", variant="primary", scale=1) | |
with gr.Column(scale=4): | |
output = gr.Image(label="Your Generated Image") | |
def process_image(height, width, steps, scales, prompt, seed, preset_prompt): | |
global pipe | |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): | |
# Concatenate the preset prompt with the user's input prompt | |
full_prompt = f"{preset_prompt} {prompt}" | |
return pipe( | |
prompt=[full_prompt], | |
generator=torch.Generator().manual_seed(int(seed)), | |
num_inference_steps=int(steps), | |
guidance_scale=float(scales), | |
height=int(height), | |
width=int(width), | |
max_sequence_length=256 | |
).images[0] | |
generate_btn.click( | |
process_image, | |
inputs=[height, width, steps, scales, prompt, seed, preset_prompt], | |
outputs=output | |
) | |
if __name__ == "__main__": | |
demo.launch() | |