File size: 4,518 Bytes
176edce
 
 
 
 
53a0a45
0935162
407289b
176edce
 
 
 
407289b
343fdaf
 
176edce
343fdaf
176edce
b232034
176edce
 
 
 
 
 
 
 
 
343fdaf
176edce
 
343fdaf
3515660
 
 
 
 
 
 
 
b232034
3515660
 
d4e82b7
3515660
 
 
 
176edce
343fdaf
3ec2621
 
 
 
afae8a4
 
3ec2621
 
 
7b9b23e
 
 
3ec2621
7b9b23e
 
afae8a4
7b9b23e
 
3515660
 
 
 
0c03acb
3515660
 
 
7b9b23e
 
 
 
 
3515660
7b9b23e
1124c49
 
3515660
1124c49
3515660
7b9b23e
 
 
 
bd7219f
407289b
3515660
3ec2621
 
3515660
 
3ec2621
3515660
3ec2621
 
 
 
016778b
 
1b0733f
343fdaf
3ec2621
 
3515660
aba7c6b
3ec2621
343fdaf
176edce
3ec2621
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import argparse
import os
import time
from os import path
from safetensors.torch import load_file
import huggingface_hub
from huggingface_hub import hf_hub_download
import os
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
import spaces
import gradio as gr
import torch
from diffusers import FluxPipeline

torch.backends.cuda.matmul.allow_tf32 = True

class timer:
    def __init__(self, method_name="timed process"):
        self.method = method_name
    def __enter__(self):
        self.start = time.time()
        print(f"{self.method} starts")
    def __exit__(self, exc_type, exc_val, exc_tb):
        end = time.time()
        print(f"{self.method} took {str(round(end - self.start, 2))}s")

if not path.exists(cache_path):
    os.makedirs(cache_path, exist_ok=True)

def load_and_fuse_lora_weights(pipe, lora_models):
    for repo, file_path, lora_scale in lora_models:
        lora_weights_path = hf_hub_download(repo_id=repo, filename=file_path)
        pipe.load_lora_weights(lora_weights_path)
        pipe.fuse_lora(lora_scale=lora_scale)

# List of LoRA models and their corresponding scales
lora_models = [
    ("mrcuddle/live2d-model-maker", "LIVE2D-FLUX.safetensors", 0.125)
]

pipe = FluxPipeline.from_pretrained("advokat/AnimePro-FLUX", torch_dtype=torch.bfloat16)

# Load and fuse LoRA weights
load_and_fuse_lora_weights(pipe, lora_models)

pipe.to(device="cuda", dtype=torch.bfloat16)

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        <div style="text-align: center; max-width: 650px; margin: 0 auto;">
            <h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">Live2D Base Model Maker</h1>
            <p style="font-size: 1rem; margin-bottom: 1.5rem;">The LoRA's *required* prompt is preloaded</p>
        </div>
        """
    )

    with gr.Row():
        with gr.Column(scale=3):
            with gr.Group():
                prompt = gr.Textbox(
                    label="Your Image Description",
                    placeholder="Girl with Red Dragon Wings",
                    lines=3
                )

                # Hidden textbox for the preset prompt
                preset_prompt = gr.Textbox(
                    label="Preset Prompt",
                    value="live2d,guijiaoxiansheng,separate hand,separate feet,separate head,multiple views,white background,magic particles, multiple references,color pallete reference,simple background,upper body,front,from side",
                    visible=False
                )

                with gr.Accordion("Advanced Settings", open=False):
                    with gr.Group():
                        with gr.Row():
                            height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024)
                            width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024)

                        with gr.Row():
                            steps = gr.Slider(label="Inference Steps", minimum=5, maximum=25, step=1, value=8)
                            scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, step=1, value=3.5)

                        seed = gr.Number(label="Seed (for reproducibility)", value=-1, precision=0)

                generate_btn = gr.Button("Generate Image", variant="primary", scale=1)

        with gr.Column(scale=4):
            output = gr.Image(label="Your Generated Image")
            
    @spaces.GPU
    def process_image(height, width, steps, scales, prompt, seed, preset_prompt):
        global pipe
        with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"):
            # Concatenate the preset prompt with the user's input prompt
            full_prompt = f"{preset_prompt} {prompt}"
            return pipe(
                prompt=[full_prompt],
                generator=torch.Generator().manual_seed(int(seed)),
                num_inference_steps=int(steps),
                guidance_scale=float(scales),
                height=int(height),
                width=int(width),
                max_sequence_length=256
            ).images[0]

    generate_btn.click(
        process_image,
        inputs=[height, width, steps, scales, prompt, seed, preset_prompt],
        outputs=output
    )

if __name__ == "__main__":
    demo.launch()