|
import os |
|
import gradio as gr |
|
|
|
from text_generation import Client, InferenceAPIClient |
|
|
|
|
|
def get_client(model: str): |
|
return InferenceAPIClient(model, token=os.getenv("HF_TOKEN", None)) |
|
|
|
|
|
def get_usernames(model: str): |
|
""" |
|
Returns: |
|
(str, str, str, str): pre-prompt, username, bot name, separator |
|
""" |
|
if model in ("OpenAssistant/oasst-sft-1-pythia-12b", "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"): |
|
return "", "<|prompter|>", "<|assistant|>", "<|endoftext|>" |
|
return "", "User: ", "Assistant: ", "\n" |
|
|
|
|
|
def predict( |
|
inputs: str, |
|
): |
|
model = "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5" |
|
client = get_client(model) |
|
preprompt, user_name, assistant_name, sep = get_usernames(model) |
|
|
|
past = [] |
|
|
|
total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip() |
|
|
|
partial_words = "" |
|
|
|
if model in ("OpenAssistant/oasst-sft-1-pythia-12b", "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"): |
|
iterator = client.generate( |
|
total_inputs, |
|
typical_p=0.1, |
|
truncate=1000, |
|
watermark=0, |
|
max_new_tokens=500, |
|
) |
|
|
|
|
|
yield iterator.generated_text |
|
|
|
g = gr.Interface( |
|
fn=predict, |
|
inputs=[ |
|
|
|
gr.components.Textbox(lines=2, label="Input", placeholder="none"), |
|
], |
|
outputs=[ |
|
gr.inputs.Textbox( |
|
lines=5, |
|
label="Output", |
|
) |
|
] |
|
) |
|
g.queue(concurrency_count=1) |
|
g.launch() |
|
|