File size: 1,472 Bytes
78d86fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import os
import gradio as gr
from text_generation import Client, InferenceAPIClient
def get_client(model: str):
return InferenceAPIClient(model, token=os.getenv("HF_TOKEN", None))
def get_usernames(model: str):
"""
Returns:
(str, str, str, str): pre-prompt, username, bot name, separator
"""
if model in ("OpenAssistant/oasst-sft-1-pythia-12b", "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"):
return "", "<|prompter|>", "<|assistant|>", "<|endoftext|>"
return "", "User: ", "Assistant: ", "\n"
def predict(
inputs: str,
):
model = "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"
client = get_client(model)
preprompt, user_name, assistant_name, sep = get_usernames(model)
past = []
total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip()
partial_words = ""
if model in ("OpenAssistant/oasst-sft-1-pythia-12b", "OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5"):
iterator = client.generate(
total_inputs,
typical_p=0.1,
truncate=1000,
watermark=0,
max_new_tokens=500,
)
yield iterator.generated_text
g = gr.Interface(
fn=predict,
inputs=[
gr.components.Textbox(lines=2, label="Input", placeholder="none"),
],
outputs=[
gr.inputs.Textbox(
lines=5,
label="Output",
)
]
)
g.queue(concurrency_count=1)
g.launch()
|