Spaces:
Runtime error
Runtime error
import streamlit as st | |
import os | |
import torch | |
from torch.utils.data import DataLoader | |
from config import get_config_universal | |
from dataset import DataSet | |
from datasetbuilder import DataSetBuilder | |
from test import Test | |
from visualization.steamlit_plot import plot_kinematic_predictions | |
x = st.slider('Select a value') | |
st.write(x, 'squared is', x * x) | |
dataset_name = 'camargo' | |
config = get_config_universal(dataset_name) | |
# model_file = 'transformertsai_g1g2rardsasd_g1g2rardsasd.pt' | |
# model = torch.load(os.path.join('./caches/trained_model/v05', model_file)) | |
sensor_options = {'Thigh & Shank & Foot': ['foot', 'shank', 'thigh'], | |
'Thigh & Shank': ['thigh', 'shank'], | |
'Thigh & Foot': ['thigh', 'foot'], | |
'Shank & Foot': ['shank', 'foot'], | |
'Thigh': ['thigh'], | |
'Shank': ['shank'], | |
'Foot': ['foot']} | |
def fetch_data(config): | |
dataset_handler = DataSet(config, load_dataset=True) | |
kihadataset_train, kihadataset_test = dataset_handler.run_dataset_split_loop() | |
kihadataset_train['x'], kihadataset_train['y'], kihadataset_train['labels'] = dataset_handler.run_segmentation( | |
kihadataset_train['x'], | |
kihadataset_train['y'], kihadataset_train['labels']) | |
kihadataset_test['x'], kihadataset_test['y'], kihadataset_test['labels'] = dataset_handler.run_segmentation( | |
kihadataset_test['x'], | |
kihadataset_test['y'], kihadataset_test['labels']) | |
train_dataset = DataSetBuilder(kihadataset_train['x'], kihadataset_train['y'], kihadataset_train['labels'], | |
transform_method=config['data_transformer'], scaler=None, noise=None) | |
test_dataset = DataSetBuilder(kihadataset_test['x'], kihadataset_test['y'], kihadataset_test['labels'], | |
transform_method=config['data_transformer'], scaler=train_dataset.scaler, | |
noise=None) | |
test_dataloader = DataLoader(dataset=test_dataset, batch_size=config['batch_size'], shuffle=False) | |
return test_dataloader, kihadataset_test | |
# @st.cache() | |
def fetch_model(sensor_name, model_name): | |
device = torch.device('cpu') | |
model_names = {'CNNLSTM':'hernandez2021cnnlstm', 'BiLSTM':'bilstm', 'BioMAT': 'transformertsai'} | |
sensor_names = {'Thigh & Shank & Foot':'thighshankfoot', | |
'Thigh & Shank':'thighshank', | |
'Thigh & Foot':'thighfoot', | |
'Shank & Foot':'shankfoot', | |
'Thigh':'thigh', | |
'Shank':'shank', | |
'Foot':'foot'} | |
if sensor_names[sensor_name]=='thighshankfoot': | |
model_file = model_names[model_name] + '_g1g2rardsasd_g1g2rardsasd.pt' | |
else: | |
model_file = sensor_names[sensor_name] + '_' + model_names[model_name]+'_g1g2rardsasd_g1g2rardsasd.pt' | |
st.write(model_file) | |
model = torch.load(os.path.join('./caches/trained_model/v05', model_file)) | |
return model | |
# @st.cache | |
def fetch_predictions(model): | |
test_handler = Test() | |
y_pred, y_true, loss = test_handler.run_testing(config, model, test_dataloader=test_dataloader) | |
y_true = y_true.detach().cpu().clone().numpy() | |
y_pred = y_pred.detach().cpu().clone().numpy() | |
return y_pred, y_true, loss | |
st.set_page_config(layout="wide") | |
st.title('BioMAT:Biomechanical Multi-Activity Transformer Model for Joint Kinematic Prediction From IMUs') | |
st.info('If you change the sensor configuration, press rerun', icon="ℹ️") | |
st.sidebar.title('Sensor Configuration') | |
selected_sensor = st.sidebar.selectbox('Pick one', ['Thigh & Shank & Foot', | |
'Thigh & Shank', | |
'Thigh & Foot', | |
'Shank & Foot', | |
'Thigh', | |
'Shank', | |
'Foot']) | |
config['selected_sensors'] = sensor_options[selected_sensor] | |
st.sidebar.title('Model Configuration') | |
selected_model = st.sidebar.selectbox('Pick one', ['CNNLSTM', | |
'BiLSTM', | |
'BioMAT']) | |
st.sidebar.title('Subject') | |
selected_subject = st.sidebar.slider('Pick a Subject Number', min_value=23, max_value=25, step=1) | |
st.sidebar.title('Activity') | |
selected_activities = st.sidebar.multiselect('Pick Output Activities', | |
['LevelGround Walking', 'Ramp Ascent', 'Ramp Descent', 'Stair Ascent', 'Stair Descent']) | |
index_to_plot = st.sidebar.number_input('Enter a number between 0 and 5', min_value=0, max_value=5) | |
if st.sidebar.button('Predict'): | |
with st.spinner('Data is loading...'): | |
test_dataloader, kihadataset_test = fetch_data(config) | |
st.success('Data is loaded!') | |
with st.spinner('Model is loading...'): | |
model = fetch_model(selected_sensor, selected_model) | |
st.success('Model is loaded!') | |
with st.spinner('Prediction ...'): | |
y_pred, y_true, loss = fetch_predictions(model) | |
st.success('Prediction is Completed!') | |
st.write('plot ...') | |
subject = 'AB' + str(selected_subject) | |
fig = plot_kinematic_predictions(y_true, y_pred, kihadataset_test['labels'], subject, | |
selected_activities=selected_activities, selected_index_to_plot=index_to_plot) | |
st.plotly_chart(fig, use_container_width=True) | |