motionsh commited on
Commit
adf1a95
·
1 Parent(s): 4054fdd

add application file

Browse files
Files changed (1) hide show
  1. app.py +118 -0
app.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ import torch
4
+ from torch.utils.data import DataLoader
5
+ from config import get_config_universal
6
+ from dataset import DataSet
7
+ from datasetbuilder import DataSetBuilder
8
+ from test import Test
9
+ from visualization.steamlit_plot import plot_kinematic_predictions
10
+
11
+ x = st.slider('Select a value')
12
+ st.write(x, 'squared is', x * x)
13
+ dataset_name = 'camargo'
14
+ config = get_config_universal(dataset_name)
15
+
16
+ # model_file = 'transformertsai_g1g2rardsasd_g1g2rardsasd.pt'
17
+ # model = torch.load(os.path.join('./caches/trained_model/v05', model_file))
18
+ sensor_options = {'Thigh & Shank & Foot': ['foot', 'shank', 'thigh'],
19
+ 'Thigh & Shank': ['thigh', 'shank'],
20
+ 'Thigh & Foot': ['thigh', 'foot'],
21
+ 'Shank & Foot': ['shank', 'foot'],
22
+ 'Thigh': ['thigh'],
23
+ 'Shank': ['shank'],
24
+ 'Foot': ['foot']}
25
+
26
+ @st.cache
27
+ def fetch_data(config):
28
+ dataset_handler = DataSet(config, load_dataset=True)
29
+ kihadataset_train, kihadataset_test = dataset_handler.run_dataset_split_loop()
30
+ kihadataset_train['x'], kihadataset_train['y'], kihadataset_train['labels'] = dataset_handler.run_segmentation(
31
+ kihadataset_train['x'],
32
+ kihadataset_train['y'], kihadataset_train['labels'])
33
+ kihadataset_test['x'], kihadataset_test['y'], kihadataset_test['labels'] = dataset_handler.run_segmentation(
34
+ kihadataset_test['x'],
35
+ kihadataset_test['y'], kihadataset_test['labels'])
36
+ train_dataset = DataSetBuilder(kihadataset_train['x'], kihadataset_train['y'], kihadataset_train['labels'],
37
+ transform_method=config['data_transformer'], scaler=None, noise=None)
38
+ test_dataset = DataSetBuilder(kihadataset_test['x'], kihadataset_test['y'], kihadataset_test['labels'],
39
+ transform_method=config['data_transformer'], scaler=train_dataset.scaler,
40
+ noise=None)
41
+ test_dataloader = DataLoader(dataset=test_dataset, batch_size=config['batch_size'], shuffle=False)
42
+ return test_dataloader, kihadataset_test
43
+
44
+ # @st.cache()
45
+ def fetch_model(sensor_name, model_name):
46
+ device = torch.device('cpu')
47
+ model_names = {'CNNLSTM':'hernandez2021cnnlstm', 'BiLSTM':'bilstm', 'BioMAT': 'transformertsai'}
48
+ sensor_names = {'Thigh & Shank & Foot':'thighshankfoot',
49
+ 'Thigh & Shank':'thighshank',
50
+ 'Thigh & Foot':'thighfoot',
51
+ 'Shank & Foot':'shankfoot',
52
+ 'Thigh':'thigh',
53
+ 'Shank':'shank',
54
+ 'Foot':'foot'}
55
+ if sensor_names[sensor_name]=='thighshankfoot':
56
+ model_file = model_names[model_name] + '_g1g2rardsasd_g1g2rardsasd.pt'
57
+ else:
58
+ model_file = sensor_names[sensor_name] + '_' + model_names[model_name]+'_g1g2rardsasd_g1g2rardsasd.pt'
59
+ st.write(model_file)
60
+ model = torch.load(os.path.join('./caches/trained_model/v05', model_file))
61
+ return model
62
+
63
+ # @st.cache
64
+ def fetch_predictions(model):
65
+ test_handler = Test()
66
+ y_pred, y_true, loss = test_handler.run_testing(config, model, test_dataloader=test_dataloader)
67
+ y_true = y_true.detach().cpu().clone().numpy()
68
+ y_pred = y_pred.detach().cpu().clone().numpy()
69
+ return y_pred, y_true, loss
70
+
71
+ st.set_page_config(layout="wide")
72
+ st.title('BioMAT:Biomechanical Multi-Activity Transformer Model for Joint Kinematic Prediction From IMUs')
73
+ st.info('If you change the sensor configuration, press rerun', icon="ℹ️")
74
+
75
+ st.sidebar.title('Sensor Configuration')
76
+ selected_sensor = st.sidebar.selectbox('Pick one', ['Thigh & Shank & Foot',
77
+ 'Thigh & Shank',
78
+ 'Thigh & Foot',
79
+ 'Shank & Foot',
80
+ 'Thigh',
81
+ 'Shank',
82
+ 'Foot'])
83
+
84
+ config['selected_sensors'] = sensor_options[selected_sensor]
85
+
86
+ st.sidebar.title('Model Configuration')
87
+ selected_model = st.sidebar.selectbox('Pick one', ['CNNLSTM',
88
+ 'BiLSTM',
89
+ 'BioMAT'])
90
+
91
+ st.sidebar.title('Subject')
92
+ selected_subject = st.sidebar.slider('Pick a Subject Number', min_value=23, max_value=25, step=1)
93
+
94
+ st.sidebar.title('Activity')
95
+ selected_activities = st.sidebar.multiselect('Pick Output Activities',
96
+ ['LevelGround Walking', 'Ramp Ascent', 'Ramp Descent', 'Stair Ascent', 'Stair Descent'])
97
+
98
+ index_to_plot = st.sidebar.number_input('Enter a number between 0 and 5', min_value=0, max_value=5)
99
+
100
+ if st.sidebar.button('Predict'):
101
+ with st.spinner('Data is loading...'):
102
+ test_dataloader, kihadataset_test = fetch_data(config)
103
+ st.success('Data is loaded!')
104
+ with st.spinner('Model is loading...'):
105
+ model = fetch_model(selected_sensor, selected_model)
106
+ st.success('Model is loaded!')
107
+ with st.spinner('Prediction ...'):
108
+ y_pred, y_true, loss = fetch_predictions(model)
109
+ st.success('Prediction is Completed!')
110
+ st.write('plot ...')
111
+ subject = 'AB' + str(selected_subject)
112
+ fig = plot_kinematic_predictions(y_true, y_pred, kihadataset_test['labels'], subject,
113
+ selected_activities=selected_activities, selected_index_to_plot=index_to_plot)
114
+ st.plotly_chart(fig, use_container_width=True)
115
+
116
+
117
+
118
+