File size: 6,883 Bytes
af5e402
f9ef99e
af5e402
 
f9ef99e
c0180e9
 
 
 
 
49112e7
af5e402
4bd76a1
af5e402
 
 
 
 
 
4bd76a1
 
30e9537
af5e402
4bd76a1
af5e402
 
 
 
 
 
 
f2ea7e1
8e5935d
 
 
 
 
 
 
 
f9ef99e
9b7a70a
f9ef99e
 
 
 
4b2417b
 
 
f9ef99e
 
 
 
5415aac
f9ef99e
69992b7
 
 
 
 
 
 
 
 
b53225a
af5e402
d554480
 
8df9be6
d554480
af5e402
8df9be6
ded1019
715faf9
5415aac
d1fccce
c686297
d554480
 
 
af5e402
 
 
 
 
 
 
 
 
 
 
 
 
 
1eb44a8
af5e402
 
 
 
6c7a41b
4bd76a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c7a41b
4bd76a1
6c7a41b
8df9be6
6c7a41b
 
 
 
4bd76a1
235662a
4bd76a1
235662a
4bd76a1
 
69992b7
4bd76a1
 
 
 
 
dc7aa17
86adf98
4ffadc5
 
dc7aa17
4ffadc5
 
 
 
 
 
 
 
4bd76a1
69992b7
4bd76a1
 
 
 
f9ef99e
 
 
 
 
 
 
 
 
4bd76a1
f9ef99e
 
 
4bd76a1
30e9537
 
4bd76a1
 
 
 
f9ef99e
30e9537
6051917
30e9537
 
 
6051917
 
 
3da8cda
 
30e9537
 
af5e402
6c7a41b
af5e402
 
53590df
 
 
af5e402
 
 
 
 
53590df
af5e402
fe3a362
6c7a41b
af5e402
 
 
6c7a41b
d6495a1
3bfae1a
6c7a41b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
try:
    import cloudinary
except:
    import os 
    os.system('pip install cloudinary')
try:
    import detectron2
except:
    import os 
    os.system('pip install git+https://github.com/facebookresearch/detectron2.git')

import cv2
import json
from matplotlib.pyplot import axis
import gradio as gr
import requests
import numpy as np
from torch import nn
import requests
from numpy.lib.type_check import imag
import random
import time

import csv
import torch

from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog
from detectron2.data.datasets import register_coco_instances



# import some common detectron2 utilities
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog

from detectron2.utils.visualizer import ColorMode

import cloudinary.uploader
import io
import os
API_KEY =os.environ["API_KEY"] 
Cloud_Name =os.environ["Cloud_Name"] 
API_Secret =os.environ["API_Secret"]  




cfg = get_cfg()

# try:
#     register_coco_instances("Fiber", {}, "./labels-fiver.json", "./Fiber")
#     Fiber_metadata = MetadataCatalog.get("Fiber")
#     dataset_dicts = DatasetCatalog.get("Fiber")
# except:
#     print("there is an issue")
register_coco_instances("Fiber", {}, "./labels-fiver.json", "./Fiber")
Fiber_metadata = MetadataCatalog.get("Fiber")
dataset_dicts = DatasetCatalog.get("Fiber")
model_path = "./model_final.pth"

# cfg = get_cfg()
# cfg.merge_from_file("./configs/detectron2/faster_rcnn_R_50_FPN_3x.yaml")
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2
# cfg.MODEL.WEIGHTS = model_path

my_metadata = MetadataCatalog.get("dbmdz_coco_all")
# Fiber_metadata.thing_classes = ["Fiber", "Fiber","Fiber"]
my_metadata.thing_classes = ["Fiber", "Fiber"]

cfg.merge_from_file("./configs/detectron2/mask_rcnn_R_50_FPN_3x.yaml")
cfg.MODEL.WEIGHTS = model_path #os.path.join(cfg.OUTPUT_DIR, "model_final.pth")
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.05  # set the testing threshold for this model
cfg.DATASETS.TEST = ("fiber", )
# predictor = DefaultPredictor(cfg)
if not torch.cuda.is_available():
    cfg.MODEL.DEVICE = "cpu"


def inference(image_url, image, min_score):
    if image_url:
        r = requests.get(image_url)
        if r:
            im = np.frombuffer(r.content, dtype="uint8")
            im = cv2.imdecode(im, cv2.IMREAD_COLOR)
    else:
        # Model expect BGR!
        im = image[:,:,::-1]

    cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.005
    predictor = DefaultPredictor(cfg)

    outputs = predictor(im)

    # v = Visualizer(im, my_metadata, scale=1)
    # out = v.draw_instance_predictions(outputs["instances"].to("cpu"))


    
    # for d in random.sample(dataset_dicts, 3):
    #     img = cv2.imread("https://meet.google.com/ice-wndh-joi.jpg")
    #     predictor(img)
    #     visualizer = Visualizer(img[:, :, ::-1], metadata=Fiber_metadata, scale=1)
    #     vis = visualizer.draw_dataset_dict(d)
    #     cv2_imshow(vis.get_image()[:, :, ::-1])
    # !zip -r ./fiber.zip  "/content/Fiber"
    # import json
    # from google.colab import files
    # uploaded = files.upload()
    
    # im = cv2.imread([key for key in uploaded.keys()
    #   ][0])
    
    
    
    # im = cv2.imread(d["file_name"])
    # outputs = predictor(im)
    v = Visualizer(im[:, :, ::-1],
                    metadata=my_metadata , #Fiber_metadata, 
                    scale=1, 
                    instance_mode=ColorMode.IMAGE_BW   # remove the colors of unsegmented pixels
    )
    v = v.draw_instance_predictions(outputs["instances"].to("cpu"))
    # cv2_imshow(v.get_image()[:, :, ::-1])
    # print(outputs["instances"])
    masks = np.asarray(outputs["instances"].pred_masks.to("cpu"))
    # bbox = np.asarray(outputs["instances"].pred_boxes.to("cpu"))
    
    # Pick an item to mask
    # img=v.get_image()
    
    # Define a dictionary to store the measurements and their positions
    measurements = {}
    
    for ind,item_mask in enumerate(masks):
        segmentation = np.where(item_mask == True)
        if  segmentation[1].any() and segmentation[0].any():
          # box=bbox[ind]
          # Get the true bounding box of the mask (not the same as the bbox prediction)

          x_min = int(np.min(segmentation[1]))
          x_max = int(np.max(segmentation[1]))
          y_min = int(np.min(segmentation[0]))
          y_max = int(np.max(segmentation[0]))
          measurement = int(0.5+len(segmentation[0])/600)
          measurements[ind] = {'measurement': measurement, 'x_min': x_min, 'x_max': x_max, 'y_min': y_min, 'y_max': y_max}
          # cv2.putText(img=img, text=str(int(0.5+len( segmentation[0])/600)), org=(x_min+20,y_min-10), fontFace=cv2.FONT_HERSHEY_TRIPLEX, fontScale=0.8, color=(0, 255, 0),thickness=2)        
        
    # Loop over the masks
    # return outputs
    for ind, item_mask in enumerate(masks):
        segmentation = np.where(item_mask == True)
        measurement = int(0.5+len(segmentation[0])/600)
        measurements[ind] = {'measurement': measurement, 'x_min': x_min, 'x_max': x_max, 'y_min': y_min, 'y_max': y_max}
    cloudinary.config(
      cloud_name = Cloud_Name,
      api_key = API_KEY,
      api_secret = API_Secret,
      secure = True
    )
    
    # Replace with the name of your CSV file
    filename = "your_file.csv"
    
    


    # Write the measurements to a CSV file
    filename=str(time.time())+'dmeasurements.csv'
    with open(filename, mode='w') as file:
        writer = csv.writer(file)
        writer.writerow(['ID', 'Measurement', 'X_Min', 'X_Max', 'Y_Min', 'Y_Max'])
        for id, data in measurements.items():
            writer.writerow([id, data['measurement'], data['x_min'], data['x_max'], data['y_min'], data['y_max']])
            # Convert the CSV content to a bytes object
    
    csv_bytes = io.StringIO( open(filename,"r").read()).read().encode("utf-8")
    
    # Upload the file to Cloudinary
    upload_result = cloudinary.uploader.upload(
    csv_bytes,
    resource_type = "raw",
    folder = "csv_files",
    public_id =filename,
    overwrite = False
    )
    # return file

    return upload_result["url"], v.get_image()


title = " fi ber detec tion Model "
description = ""
article = ''

gr.Interface(
    inference,
    [gr.inputs.Textbox(label="Image URL", placeholder="https://api.digitale-sammlungen.de/iiif/image/v2/bsb10483966_00008/full/500,/0/default.jpg"),
     gr.inputs.Image(type="numpy", label="Input Image"),
     gr.Slider(minimum=0.0, maximum=1.0, value=0.01, label="Minimum score"),
    ], 


    title=title,
    description=description,
    article=article,

    examples=[],
      outputs=[ "text","image"],
).launch()