mosidi commited on
Commit
6c7a41b
·
1 Parent(s): 1eb44a8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -11
app.py CHANGED
@@ -70,7 +70,8 @@ model_path = "./model_final.pth"
70
  # cfg.MODEL.WEIGHTS = model_path
71
 
72
  # my_metadata = MetadataCatalog.get("dbmdz_coco_all")
73
- # my_metadata.thing_classes = ["Fiber", "Fiber"]
 
74
  cfg = get_cfg()
75
  cfg.merge_from_file("./configs/detectron2/mask_rcnn_R_50_FPN_3x.yaml")
76
  cfg.MODEL.WEIGHTS = model_path #os.path.join(cfg.OUTPUT_DIR, "model_final.pth")
@@ -96,7 +97,7 @@ def inference(image_url, image, min_score):
96
 
97
  outputs = predictor(im)
98
 
99
- # v = Visualizer(im, my_metadata, scale=1.2)
100
  # out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
101
 
102
 
@@ -117,14 +118,14 @@ def inference(image_url, image, min_score):
117
 
118
 
119
 
120
- # # im = cv2.imread(d["file_name"])
121
  # outputs = predictor(im)
122
- # v = Visualizer(im[:, :, ::-1],
123
- # metadata=Fiber_metadata,
124
- # scale=1,
125
- # instance_mode=ColorMode.IMAGE_BW # remove the colors of unsegmented pixels
126
- # )
127
- # v = v.draw_instance_predictions(outputs["instances"].to("cpu"))
128
  # cv2_imshow(v.get_image()[:, :, ::-1])
129
  # print(outputs["instances"])
130
  masks = np.asarray(outputs["instances"].pred_masks.to("cpu"))
@@ -190,7 +191,7 @@ def inference(image_url, image, min_score):
190
  )
191
  # return file
192
 
193
- return upload_result["url"]
194
 
195
 
196
  title = " fi ber detec tion Model "
@@ -204,7 +205,11 @@ gr.Interface(
204
  gr.Slider(minimum=0.0, maximum=1.0, value=0.01, label="Minimum score"),
205
  ],
206
  gr.Text(label="Data"),
 
207
  title=title,
208
  description=description,
209
  article=article,
210
- examples=[]).launch()
 
 
 
 
70
  # cfg.MODEL.WEIGHTS = model_path
71
 
72
  # my_metadata = MetadataCatalog.get("dbmdz_coco_all")
73
+ Fiber_metadata.thing_classes = ["Fiber", "Fiber","Fiber"]
74
+ # my_metadata.thing_classes = ["Fiber", "Fiber";]
75
  cfg = get_cfg()
76
  cfg.merge_from_file("./configs/detectron2/mask_rcnn_R_50_FPN_3x.yaml")
77
  cfg.MODEL.WEIGHTS = model_path #os.path.join(cfg.OUTPUT_DIR, "model_final.pth")
 
97
 
98
  outputs = predictor(im)
99
 
100
+ # v = Visualizer(im, my_metadata, scale=1)
101
  # out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
102
 
103
 
 
118
 
119
 
120
 
121
+ # im = cv2.imread(d["file_name"])
122
  # outputs = predictor(im)
123
+ v = Visualizer(im[:, :, ::-1],
124
+ metadata=Fiber_metadata,
125
+ scale=1,
126
+ instance_mode=ColorMode.IMAGE_BW # remove the colors of unsegmented pixels
127
+ )
128
+ v = v.draw_instance_predictions(outputs["instances"].to("cpu"))
129
  # cv2_imshow(v.get_image()[:, :, ::-1])
130
  # print(outputs["instances"])
131
  masks = np.asarray(outputs["instances"].pred_masks.to("cpu"))
 
191
  )
192
  # return file
193
 
194
+ return upload_result["url"], v.get_image()
195
 
196
 
197
  title = " fi ber detec tion Model "
 
205
  gr.Slider(minimum=0.0, maximum=1.0, value=0.01, label="Minimum score"),
206
  ],
207
  gr.Text(label="Data"),
208
+
209
  title=title,
210
  description=description,
211
  article=article,
212
+
213
+ examples=[]
214
+ outputs=["image", "text"],
215
+ ).launch()