Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -70,7 +70,8 @@ model_path = "./model_final.pth"
|
|
70 |
# cfg.MODEL.WEIGHTS = model_path
|
71 |
|
72 |
# my_metadata = MetadataCatalog.get("dbmdz_coco_all")
|
73 |
-
|
|
|
74 |
cfg = get_cfg()
|
75 |
cfg.merge_from_file("./configs/detectron2/mask_rcnn_R_50_FPN_3x.yaml")
|
76 |
cfg.MODEL.WEIGHTS = model_path #os.path.join(cfg.OUTPUT_DIR, "model_final.pth")
|
@@ -96,7 +97,7 @@ def inference(image_url, image, min_score):
|
|
96 |
|
97 |
outputs = predictor(im)
|
98 |
|
99 |
-
# v = Visualizer(im, my_metadata, scale=1
|
100 |
# out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
|
101 |
|
102 |
|
@@ -117,14 +118,14 @@ def inference(image_url, image, min_score):
|
|
117 |
|
118 |
|
119 |
|
120 |
-
#
|
121 |
# outputs = predictor(im)
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
# cv2_imshow(v.get_image()[:, :, ::-1])
|
129 |
# print(outputs["instances"])
|
130 |
masks = np.asarray(outputs["instances"].pred_masks.to("cpu"))
|
@@ -190,7 +191,7 @@ def inference(image_url, image, min_score):
|
|
190 |
)
|
191 |
# return file
|
192 |
|
193 |
-
return upload_result["url"]
|
194 |
|
195 |
|
196 |
title = " fi ber detec tion Model "
|
@@ -204,7 +205,11 @@ gr.Interface(
|
|
204 |
gr.Slider(minimum=0.0, maximum=1.0, value=0.01, label="Minimum score"),
|
205 |
],
|
206 |
gr.Text(label="Data"),
|
|
|
207 |
title=title,
|
208 |
description=description,
|
209 |
article=article,
|
210 |
-
|
|
|
|
|
|
|
|
70 |
# cfg.MODEL.WEIGHTS = model_path
|
71 |
|
72 |
# my_metadata = MetadataCatalog.get("dbmdz_coco_all")
|
73 |
+
Fiber_metadata.thing_classes = ["Fiber", "Fiber","Fiber"]
|
74 |
+
# my_metadata.thing_classes = ["Fiber", "Fiber";]
|
75 |
cfg = get_cfg()
|
76 |
cfg.merge_from_file("./configs/detectron2/mask_rcnn_R_50_FPN_3x.yaml")
|
77 |
cfg.MODEL.WEIGHTS = model_path #os.path.join(cfg.OUTPUT_DIR, "model_final.pth")
|
|
|
97 |
|
98 |
outputs = predictor(im)
|
99 |
|
100 |
+
# v = Visualizer(im, my_metadata, scale=1)
|
101 |
# out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
|
102 |
|
103 |
|
|
|
118 |
|
119 |
|
120 |
|
121 |
+
# im = cv2.imread(d["file_name"])
|
122 |
# outputs = predictor(im)
|
123 |
+
v = Visualizer(im[:, :, ::-1],
|
124 |
+
metadata=Fiber_metadata,
|
125 |
+
scale=1,
|
126 |
+
instance_mode=ColorMode.IMAGE_BW # remove the colors of unsegmented pixels
|
127 |
+
)
|
128 |
+
v = v.draw_instance_predictions(outputs["instances"].to("cpu"))
|
129 |
# cv2_imshow(v.get_image()[:, :, ::-1])
|
130 |
# print(outputs["instances"])
|
131 |
masks = np.asarray(outputs["instances"].pred_masks.to("cpu"))
|
|
|
191 |
)
|
192 |
# return file
|
193 |
|
194 |
+
return upload_result["url"], v.get_image()
|
195 |
|
196 |
|
197 |
title = " fi ber detec tion Model "
|
|
|
205 |
gr.Slider(minimum=0.0, maximum=1.0, value=0.01, label="Minimum score"),
|
206 |
],
|
207 |
gr.Text(label="Data"),
|
208 |
+
|
209 |
title=title,
|
210 |
description=description,
|
211 |
article=article,
|
212 |
+
|
213 |
+
examples=[]
|
214 |
+
outputs=["image", "text"],
|
215 |
+
).launch()
|